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Abstract 

SAE Standard Aerospace Recommended Practice (ARP) 4761, Guidelines and Methods for Con-
ducting the Safety Assessment Process on Civil Airborne Systems and Equipment, provides gen-
eral guidance on evaluating the safety aspects of a design and identifies processes, methods, and 
tools to support the evaluation. The Architecture Analysis and Design Language (AADL) Error 
Model Annex defines features to enable specification of risk mitigation methods in an architecture 
and assessments of system properties such as safety and reliability. This report describes how the 
AADL Error Model Annex supports the safety assessment processes and techniques presented in 
SAE Standard ARP4761. It provides a mapping between constructs of the AADL Error Model 
Annex and the assessment techniques identified in ARP4761 and presents examples of using the 
Error Model Annex with those techniques. The processes and techniques of the ARP4761 stand-
ard that this report addresses are the Functional Hazard Assessment, Preliminary System Safety 
Assessment, System Safety Assessment, Fault Tree Analysis, Failure Modes and Effects Analysis, 
Markov Analysis, and Dependence Diagrams, also referred to as Reliability Block Diagrams.  
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1 Introduction 

SAE Standard Aerospace Recommended Practice (ARP) 4761, Guidelines and Methods for Con-
ducting the Safety Assessment Process on Civil Airborne Systems and Equipment, provides gen-
eral guidance on evaluating the safety aspects of a design and identifies processes, methods, and 
tools to support the evaluation [SAE 1996]. The techniques identified in the ARP4761 assessment 
process are Functional Hazard Assessment (FHA), Preliminary System Safety Assessment 
(PSSA), System Safety Assessment (SSA), Common Cause Analysis (CCA), Fault Tree Analysis 
(FTA), Failure Modes and Effects Analysis (FMEA), Failure Modes and Effects Summary, Mar-
kov Analysis (MA), and Dependence Diagrams (DDs), also referred to as Reliability Block Dia-
grams (RBDs).  

The Architecture Analysis and Design Language (AADL) Error Model Annex defines features to 
enable specification of risk mitigation methods in an architecture and assessments of system prop-
erties such as safety and reliability.1 Figure 1 is adapted from the ARP4761 standard and provides 
an overview of safety assessment, highlighting the FHA, PSSA, and SSA processes. In this report, 
we address the FHA, PSSA, and SSA processes and describe how the AADL Error Model Annex 
supports these and the FTA, MA, and DD/RBD methods, which are integral to an effective safety 
assessment.  

Concept Development

Preliminary Design

Detailed Design

Design Validation and Verification

Aircraft FHA    System FHA      

Aircraft FTAs   
PSSAs

SSAs  

CCAs                      

System FTAs
System FMEAs

System FTAs

 

Figure 1: Overview of the Safety Assessment Process [SAE 1996] 

1  Delange, Julien; Feiler, Peter; Gluch, David; & Hudak, John. Architecture Fault Modeling with AADL and the 
Error Model Annex v2. Software Engineering Institute, Carnegie Mellon University, forthcoming. Hereafter cited 
as (Delange, forthcoming). 
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1.1 Functional Hazard Assessment  

The FHA is a systematic examination of functions to identify and classify failure conditions of 
those functions according to their severity. The FHA output is the input to a PSSA and a starting 
point for the creation of safety requirements with an FTA, DD/RBD, or MA supporting the more 
detailed requirements, especially quantitative requirements. An FHA is usually conducted at the 
aircraft and system levels. 

The AADL Error Model Annex supports the FHA through property assignments within an AADL 
architecture model. Users can generate an FHA report using the Error Model Annex and the Open 
Source AADL Tool Environment (OSATE), by assigning Hazard, Likelihood, and Severity prop-
erty values to points of failure. Then, OSATE can generate the FHA report. 

1.2 Preliminary System Safety Assessment 

The PSSA is a systematic, top-down investigation of proposed system architectures. It determines 
how failures can lead to the functional hazards identified in the FHA and how the requirements of 
the FHA can be achieved. The PSSA process is iterative, correlates with the design process, and 
continues throughout the design cycle. A PSSA can be qualitative and quantitative and is con-
ducted at multiple levels from aircraft to more detailed system levels, where higher levels provide 
a basis for conducting lower level PSSAs. For example, the PSSA data from the aircraft level in-
form PSSA data from the lower components. 

The ARP4761 recommends using FTAs, FHAs, RBDs, and MAs to make a first description of 
safety concerns during the PSSA. It indicates that where FTAs are referenced, DDs/RBDs or MAs 
may be employed. Then, this preliminary description is refined and enhanced during the SSA. The 
AADL Error Model Annex provides support for conducting these analyses as well as supporting 
analyses of various levels of fault propagation through an architecture. 

To investigate the occurrence and propagation of errors, users identify error-propagation points 
and error-propagation paths within the AADL architecture model. Then, with the OSATE tool, 
users can create a graphical representation of the occurrence of an error and its impact on other 
components within the architecture. 

When using the AADL Error Model Annex for creating and analyzing RBDs, system designers 
must assign reliability values as properties of components within an AADL architecture model 
and embed descriptions of system failure characteristics within that model. Using the OSATE 
tool, users can analyze the RBD representation to determine the system failure probability. 

In conducting an FTA, users use the same AADL error model developed for the RBD. Within the 
OSATE tool, the reliability representation of an AADL model is exported into an FTA tool (e.g., 
into OpenFTA [OpenFTA 2013]) for the analysis. 

In conducting MAs, system designers assign failure probabilities or rates to transitions. For dis-
crete-time Markov chains (DTMCs), users assign failure probabilities as a fixed probability distri-
bution. For continuous-time Markov chains (CTMCs), users assign the failure rates as a Poisson 
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distribution. Within the OSATE tool, the AADL model is exported into a Markov chain represen-
tation compliant with the PRISM tool [Kwiatkowska 2011] for the analysis.2 

1.3 System Safety Assessment 

The SSA is a systematic investigation of a system, its architecture, and its implementation to show 
compliance with the safety requirements. The methods employed may be qualitative or quantita-
tive and are the same as those used in the PSSA. SSAs generally include additional analyses such 
as FMEA. However, rather than providing an evaluation of proposed architectures and derivation 
of safety requirements, the SSA provides a verification that the design and implementation meet 
the safety requirements defined in the FHA and PSSA. 

For conducting an SSA, the Error Model Annex supports the methods outlined for the PSSA and 
provides support for an FMEA. For the FMEA, users employ the Fault Impact Analysis capabili-
ties of the OSATE tool set to generate an FMEA report. A Fault Impact Analysis traces the error 
paths between an error source and the components that it affects. 

1.4 Reader’s Guide 

Section 2 summarizes the AADL error model constructs that support ARP4761 processes and 
methods. Section 3 presents the use of the OSATE tool set in conducting FHA, FTA, FMEA, MA, 
and DD/RBD techniques. Section 4 presents the use of the Error Model Annex in the error model-
ing and analysis of the aircraft wheel brake system (WBS) example introduced in the ARP4761 
and AIR6110 documents [SAE 1996, 2011]. An appendix lists the acronyms used in this report. 

This report highlights the use of the AADL Error Model Annex for supporting the ARP4761 pro-
cess. Another report provides a detailed overview of the AADL Error Model Annex (Delange, 
forthcoming). Both documents are complementary, and readers might consider reading them to-
gether. Also, when required, we reference this document so that users may find other useful in-
formation for modeling safety concerns of their architecture and study the advanced constructs of 
the language. 

2  Note that there is also a commercial product called PRISM®, which is a System Reliability Center software tool 
for comprehensive system reliability prediction (http://src.alionscience.com/prism), but it does not provide formal 
analysis capabilities. 
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2 AADL Error Model Constructs That Support ARP4761 

In this section, we present the AADL error model constructs that support various elements of the 
ARP4761 Guidelines and Methods for Conducting the Safety Assessment Process on Civil Air-
borne Systems and Equipment [SAE 1996]. Table 1 summarizes these constructs, listing AADL 
error model constructs in the left column and ARP4761 elements in the top row. The subsequent 
sections present the specification and use of each AADL error model construct. 

Table 1: ARP4761 Process Elements and Supporting AADL Error Model Constructs 

AADL Error Model Constructs 

ARP4761 Process Elements 
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Error flows Error propagation x x x x x 

Error source x x x   
Error path   x   
Error sink  x x   

Error behavior Error states  x  x x 
Error transitions  x  x x 
Error events x x x  x 
Composite error model  x   x 

Properties Hazards property x     
OccurrenceDistribution property    x x 

2.1 Error Propagation 

2.1.1 Definition 

Users can incrementally develop and analyze a model. For example, users can explore error 
propagation through architecture without defining component details. Consider a basic dual-
redundant control system, as shown in Figure 2. 
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Figure 2: Basic Dual-Redundant Control System 

A single set of sensors provides input to two instances of a controller. Each controller outputs an 
actuator command to a fault manager that decides whether one or both controllers are faulty and 
outputs a command to the actuator. Nominally, the fault manager outputs the command value 
from only one controller. If that controller is deemed faulty, the fault manager uses the other value 
unless the second (backup) controller is deemed faulty. If both controllers are deemed faulty, then 
the fault manager outputs no value. 

In modeling this system, users can first represent error propagations for the system. To do this, 
users place Error Model Annex subclauses in each of the component declarations. Users can place 
them in the type or implementation declarations. At this level, it can be useful to place them in the 
type declarations, since they will be carried into any extensions of those declarations. Error 
propagations are discussed in Architecture Fault Modeling with AADL and the Error Model An-
nex, Version 2 (Delange, forthcoming). 

2.1.2 Procedure 

For each artifact that may propagate an error, users declare error propagation in the error prop-
agations section. An error propagation can be incoming (the component receives an error) or 
outgoing (the component transmits an error). An error propagation can be associated with com-
ponent features (e.g., component access, event/data ports) or bindings (e.g., bus, processor). If an 
error propagation point both receives and sends errors, users include two error propagations: 
one for the incoming errors and another for the outgoing errors. Users must associate one or more 
error types with each propagation statement to specify what kind of error is propagated by this 
error point. 

2.1.3 Constraints 

Each error-propagation declaration must specify types associated with it. Users do this using a set 
of types, which may consist of only a single type. 

2.1.4 Example 

Listing 1 shows the specification of error propagation for the basic dual-redundant control sys-
tem (shown in Figure 2). For this example, both data ports are declared as propagation points, and 
an error path is declared from the in data port to the out data port. Specifically, an error of any 
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type can propagate into the component through the data port dpin, and an error of any type can 
propagate out of the data port dpout.  

system control_sys 
features 
dpin: in data port; 
dpout: out data port; 
 
annex EMV2{** 
   error propagations 
      dpin: in propagation{AnyError}; 
      dpout: out propagation{AnyError}; 
   flows 
      fPath: error path dpin  -> dpout ; 
   end propagations; 
**}; 
end control_sys; 

Listing 1: Error-Annex Subclause Within a Type Declaration 

Similarly, users can declare error propagations for the other components, as shown in Listing 2. 
The device sensor is an error source for any error type that propagates out of the data port dpout. 
The device actuator is an error sink for any error type. The ft_manager, with ability to block 
errors, is a sink for any error type. 

device sensor 
features 
dpout: out data port; 
annex EMV2{** 
   error propagations 
      dpout: out propagation{AnyError} ; 
   flows 
      fPath: error source dpout{AnyError}; 
   end propagations; 
**}; 
end sensor; 
-- 
device actuator 
features 
   dpin: in data port; 
annex EMV2{** 
   error propagations 
      dpin: in propagation{AnyError}; 
   flows 
      fPath: error sink dpin{AnyError}; 
   end propagations; 
**}; 
end actuator ; 
-- 
system ft_manager_dual 
features 
   dpin1: in data port; 
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   dpin2: in data port; 
   dpout: out propagation{AnyError} ; 
annex EMV2{** 
   error propagations 
      dpin1: in propagation{AnyError}; 
      dpin2: in propagation{AnyError}; 
      dpout: out propagation{AnyError}; 
   flows 
      fP1: error sink dpin1{AnyError}; 
      fP: error sink dpin2{AnyError}; 
   end propagations; 
**}; 
end ft_manager_dual; 

Listing 2: Error Propagations for the Sensor, Actuator, and Fault Manager 

With these error-propagation declarations incorporated into models, users can show the propaga-
tion of errors through the system. For example, consider an error in Controller 1. It will propagate 
to the fault manager but will not propagate through to the actuator, as the fault manager is a sink 
and is thus supposed to avoid the error propagation, as shown in Figure 3. 

 
Figure 3: Error Propagation from Controller 1 

Users may use this analysis at the outset of an error assessment of a complex system with hun-
dreds of interacting components. In such a system, unlike the simple example shown here, it 
might not be obvious where errors may propagate. Propagation analysis can be expanded to dis-
tinct error types where there may be differential error propagation through components of a sys-
tem. For example, an out-of-range value from one sensor in a set of redundant sensors may be 
detected by a component sampling the sensor, allowing it to select another sensor. However, an 
incorrect value that is within the acceptable range will continue to be propagated through the 
component sampling the sensors, which results in a miscalculation later in the control process. 
Also, users can model the transformation of error types. For example, a bad data value received 
by a software component may result in that component aborting and not outputting a value. Using 
the type system, users can model and analyze these complexities. This is discussed in more detail 
in Architecture Fault Modeling (Delange, forthcoming). 
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2.2 Error Source 

2.2.1 Definition 

An error source declaration indicates that an error, which originates from within a component, 
propagates out of that component. The error propagates out through one of the features or bind-
ings of the component. Error sources are discussed in Architecture Fault Modeling (Delange, 
forthcoming). 

2.2.2 Procedure 

To declare an error source for a component, users 
1. declare an out propagation point in the error propagations section (as described in Section 

2.1.2). In so doing, users establish the feature or binding through which the error propagates 
out of the component. Optionally, users can also declare the type of error that is propagated. 

2. declare the error source in the flows block of the error propagations section, thereby nam-
ing the flow, establishing the component as the source of the error flow, and associating the 
error-propagation point with the flow. The error type associated with the error source must 
comply with the declaration of the out propagation point and be a subtype of an error from 
the associated error set. 

2.2.3 Constraints 
• The declaration must be included in an EMV2 error-annex subclause for the component.  

• One feature or binding can propagate different error types. Identify these with separate dec-
larations in the error propagations section. The flows declarations block allows a user to 
distinguish the error types that originated within the component itself from the one being re-
ceived and propagated. For example, a component can receive an OutOfBound error type on 
an incoming error-propagation point and produce a ValueError on one of its outgoing error-
propagation points. For more information about error propagation, see Architecture Fault 
Modeling (Delange, forthcoming). 

2.2.4 Example 

Listing 3 shows the definition of an error-propagation source and associated flow. The component 
(battery) propagates the NoPower error type on its bus access feature socket. 
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device battery 
features 
 socket : provides bus access common::power.generic; 
annex EMV2{** 
 use types error_library; 
 use behavior error_library::simple; 
 error propagations 
  socket : out propagation{NoPower}; 
 flows 
  f1 : error source socket{NoPower}; 
 end propagations; 
**}; 
end battery; 

Listing 3: Declaration of Error Source on Component Features 

Listing 4 shows the error-annex declarations for declaring error propagations through bindings. It 
describes a virtual processor that propagates the SoftwareFailure error type to all components that 
are bound to the virtual processor. 

virtual processor partition 
annex EMV2{** 
 use types error_library; 
 use behavior error_library::simple; 
 
 error propagations 
  bindings : out propagation{SoftwareFailure}; 
 flows 
  fsoft : error source bindings{SoftwareFailure}; 
 end propagations; 
**}; 

end partition; 

Listing 4: Error Model Annex Subclause on Component Bindings 

2.3 Error Path 

2.3.1 Definition 

An error path describes how an error, which originates outside of a component, passes through 
that component. It specifies that an error propagates into the component through one feature or 
binding, continues through the component, and exits through an outgoing feature or binding of the 
component. The component behavior may transform the error (i.e., change its type) as it passes 
through the component. For example, an incoming late-delivery error may be transformed as an 
outgoing-service error. Error path description is also described in Architecture Fault Modeling 
(Delange, forthcoming). 
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2.3.2 Procedure 

Declaring an error path requires the user to 
1. declare an in propagation for the feature or binding that receives the incoming error (as de-

scribed in Section 2.1.2). Users specify this within the error propagations section of the 
component. 

2. declare the out propagation for the feature or binding that transmits the error out of the 
component. Users specify this within the error propagations section of the component. 

3. declare the error path in the flows section and specify the appropriate error type. In particu-
lar, if the error is transformed, users specify different error types for the incoming and out-
going features. 

2.3.3 Constraints 

The declaration must be included in an EMV2 error-annex subclause for the component.  

2.3.4 Examples 

2.3.4.1 Error Path Through Connections 

The example in Listing 5 shows the declaration for an error path through a control system com-
ponent, where the component receives the bad data value Bad_Data. In response to the error, the 
control_sys component does not send a command to the actuator. In the model, the output error 
type is No_Flow_Cmd, which is an extension of the ServiceOmission error type. The extension, 
which is a renaming, is declared in the package ErrorModelLibrary.  

system control_sys 
features 
dpin: in data port; 
dpout: out data port; 
 
annex EMV2{** 
   use types ErrorModelLibrary; 
   error propagations 
      dpin: in propagation{Bad_Data}; 
      dpout: out propagation{No_Flow_Cmd}; 
   flows 
      fPath: error path dpin  -> dpout ; 

   end propagations;**};end control_sys; 

Listing 5: Basic Control System Component 
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Figure 4: Graphical Representation of the Control System with Error Flows 

2.3.4.2 Error Path Through Bindings 

The following example shows an error path for a component binding. The component partition 
defines an in propagation for the type HardwareFailure for each processor bound to it. It also 
defines an out propagation for all components bound to it (for example, a process bound to this 
partition component). Finally, it declares an error path that specifies that any HardwareFailure 
received from the bound processor is propagated to the bindings. On the other hand, the same 
component is an error source for the SoftwareFailure type. Figure 5 illustrates the error flow of 
this declaration. 

 

Figure 5: Error Flow of the HardwareFailure to SoftwareFailure Using Bindings 

virtual processor partition 
annex EMV2{** 
 use types error_library; 
 use behavior error_library::simple; 
 
 error propagations 
  bindings : out propagation{SoftwareFailure, HardwareFailure}; 
  processor : in  propagation{HardwareFailure}; 
 flows 
  fsoft : error source bindings{SoftwareFailure}; 
  fhard : error path processor{HardwareFailure} -> bindings; 
 end propagations; 
**}; 

end partition; 

Listing 6: Declaration of Error Flows Using Bindings 

Processor 
Virtual processor 

 
Process 
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2.4 Error Sink 

2.4.1 Definition 

In an error sink, an error that enters a component is handled inside the component, either by the 
component itself or one of its subcomponents. An error sink represents the end of an error flow 
that originates from an error source. Error sinks are detailed in Architecture Fault Modeling 
(Delange, forthcoming). 

2.4.2 Procedure 

Declaring an error sink requires the user to  
1. declare an in propagation for the feature or binding that receives the incoming error (as de-

scribed in Section 2.1.2). In so doing, users establish the feature or binding through which 
the error propagates into the component. Optionally, users can also declare one or more 
types of errors that are propagated. 

2. declare an error sink in the flows section. Optionally, users can also declare one or more 
types of errors that are propagated. The associated error set of the error sink is a subset of 
(or the same as) the incoming propagation types. 

2.4.3 Example 

The following example shows an incoming error propagation with a type NoService for the bus 
access feature input. This incoming error propagation is used in the declaration of the error 
sink ns1. Additionally, notice that the in propagation input triggers a state change in the error 
behavior, as specified in the transitions section of the component error behavior section. 

system wheel_one_input extends wheel 
features 
 input : requires bus access common::pressure.i; 
annex EMV2{** 
 use types error_library; 
 use behavior error_library::simple; 
  
 error propagations 
  input : in propagation{NoService}; 
 flows 
  ns1 : error sink input{NoService}; 
 end propagations; 
  
 component error behavior 
 transitions 
  t1 : Operational -[input{NoService}]-> Failed; 
 end component; 
**}; 

end wheel_one_input; 

Listing 7: Declaration of Error Sinks Using Bindings 
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2.5 Error Events 

2.5.1 Definition 

An error event represents an internal event of the component, specific to error modeling. For 
example, for a battery, an error event could represent the fact that the battery is depleted or that 
an internal component fails. Error events are also detailed in Architecture Fault Modeling 
(Delange, forthcoming). 

2.5.2 Procedure 

Declaring an error event requires the user to 
• declare the event in the component error behavior section within the annex EMV2 section 

of a component declaration 

• declare the event in the error behavior section of an error library and reference that behav-
ior in the use behavior section  

2.5.3 Constraints 

After declaring the error event, users can associate the event with a condition that triggers state 
transitions or error propagations. 

2.5.4 Example 

The following example shows the definition of two error events, Depleted and Explode, for a 
component named battery. These are declared within the component error behavior section. 
Also, all of the events declared in the error behavior simple, defined in the error library package 
error_library, are events associated with the battery component. By using the library in the bat-
tery component, as shown in Listing 8, the events op and failure are also events for the battery 
component. Listing 9 shows an excerpt from the library error_library. 

device battery 
features 
 socket : provides bus access common::power.generic; 
annex EMV2{** 
 use types error_library; 
 use behavior error_library::simple; 
 
 error propagations 
  socket : out propagation{NoPower}; 
 flows 
  f1 : error source socket{NoPower}; 
 end propagations; 
 component error behavior 
 events 
  Depleted : error event; 
  Explode  : error event; 
 end component; 
end battery; 

Listing 8: Use of an Error Library Within a Component Declaration 
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package error_library 
public 
annex EMV2{**  
   error behavior simple 
   events 
      op : error event; 
      failure : error event; 
   states 
      Operational : initial state; 
      Failed : state; 
   transitions 
      t1 : Operational -[failure]-> Failed; 
      t2 : Failed -[op]-> Operational; 
   end behavior;  
**}; 
end error_library; 

Listing 9: Definition of an Error Library 

2.6 Error States 

2.6.1 Definition 

Error state declarations define the specific error states of state-machine error-behavior models. 
Error states are generic and are declared within an error-annex library package as part of an er-
ror-behavior declaration. These error behaviors are imported by a component. Error states and 
state machines are also discussed in Architecture Fault Modeling (Delange, forthcoming). 

2.6.2 Procedure 

Declaring an error state requires the user to 
• declare the state in the error behavior section of an error library, and reference that behavior 

in the use behavior section  

• import the state-machine behavior with a use behavior within the annex EMV2 section of a 
component declaration 

2.6.3 Constraints 

Users must declare one state as the initial state for each state machine. 

2.6.4 Example 

In the following example, we show the definition of a generic error behavior in a package. In this 
example, two states, Operational and Failed, are defined within the state machine Simple. The 
initial state is the Operational state.  

package error_library 
public 
annex EMV2{** 
 error types 
  ValueError   : type; 
  OutOfRange   : type extends ValueError;  
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  Inconsistent  : type extends ValueError; 
 end types; 
 
 error behavior Simple 
 states 
  Operational : initial state; 
  Failed      : state; 
 end behavior; 
**}; 
end error_library; 

Listing 10: Declaration of Error States Within an Error Library 

This generic error behavior Simple can be imported into a component with the use behavior dec-
laration. Thus, the virtual processor component partition has two states: Operational, which is the 
initial state, and Failed. 

virtual processor partition 
annex EMV2{** 
 use types error_library; 
 use behavior error_library::simple; 
**}; 
end partition; 

Listing 11: Use of an Error Behavior 

2.7 Error Transitions 

2.7.1 Definition 

Error transitions are part of a component’s state-machine error-behavior model. They define the 
ways that the state machine moves from one state to another. They encompass a definition of the 
starting state, conditions for the transitions, and the terminating state of the transition. Error 
transitions are used in defining the generic error state machines within an error-annex library 
package and can be declared as part of a component’s error-behavior declaration. Error transi-
tions are discussed in Architecture Fault Modeling (Delange, forthcoming). 

2.7.2 Procedure 

Declaring a transition requires  
1. a name for the transition (optional) 
2. a source state for the transition  
3. a condition that references an incoming error propagation or an error event 
4. a destination state, defined in the imported behavior or the specific component error behavior 

2.7.3 Constraints 

Users can declare transitions within a component declaration only if the component is associated 
with an error behavior. The transitions declared within the component are specific to the compo-
nent and are combined with those imported with the behavior.  

CMU/SEI-2014-TR-020 | 15  



 

Two transitions cannot have the same source state and condition: this would lead to nondetermin-
istic behavior. However, several error transitions can have the same error-state source, as long 
as they have different conditions. 

In the Error Model Annex semantics, the error transitions are executed after the propagations 
section. The rationale is that the propagations section depends on the current state of the compo-
nent, so states are updated before propagating any error. Note also that only an error sink may 
trigger a switch from one state to another through an error-behavior transition (as defined in Sec-
tion 2.7). 

2.7.4 Example 

The following example defines two error transitions for switching from the Operational state to 
the Failed state. One is triggered when the event Depleted occurs and another when the Explode 
event occurs. 

device battery 
features 
 socket : provides bus access common::power.generic; 
annex EMV2{** 
 use types error_library; 
 use behavior error_library::simple; 
 component error behavior 
 events 
  Depleted : error event; 
  Explode  : error event; 
 transitions 
  Operational -[Depleted]-> Failed; 
  Operational -[Explode]-> Failed; 
 propagations 
  p1: Failed -[]-> socket(NoPower); 
  normal : Operational -[]-> socket(NoError); 
 end component; 
**}; 
end battery; 

Listing 12: Use of Error Transitions and Propagations 

2.8 Error Propagation Condition 

2.8.1 Definition 

An error propagation condition is part of a component-specific error-behavior specification. It 
defines the conditions under which a component emits an error. Error propagation conditions 
are also discussed in Architecture Fault Modeling (Delange, forthcoming). 

2.8.2 Procedure 

Defining an error propagation condition requires 
1. a name (optional) 
2. a state in which the component propagates the error 
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3. a condition that triggers the error emission (A condition references an incoming error prop-
agation or error event.) 

4. an out error propagation point that defines which part of the component (feature or bind-
ing) emits the propagation  

2.8.3 Constraints 

As part of the Error Model Annex semantics, the error propagations are executed before the 
transitions section. Also, the incoming error propagation referenced within a propagation 
condition should be specified as an error path in the error flows of the component. 

2.8.4 Example 

The following example defines the propagation for the component battery. When the component 
is in the Operational mode, it does not propagate any error (NoError) on its bus access. In the 
Failed mode, it sends the NoPower error type in this feature. No conditions are specified for ei-
ther propagation. 

device battery 
features 
 socket : provides bus access common::power.generic; 
annex EMV2{** 
 use types error_library; 
 use behavior error_library::simple; 
 component error behavior 
 events 
  Depleted : error event; 
  Explode  : error event; 
 transitions 
  Operational -[Depleted]-> Failed; 
  Operational -[Explode]-> Failed; 
 propagations 
  p1: Failed -[]-> socket(NoPower); 
  normal : Operational -[]-> socket(NoError); 
 end component; 
**}; 
end battery; 

Listing 13: Declaration of Error-Propagation Condition 

2.9 Composite Error Behavior Model 

2.9.1 Definition 

The composite error behavior model expresses the error behavior of a component in terms of the 
Error states of its subcomponents. Composite error behavior model is also discussed in Architec-
ture Fault Modeling (Delange, forthcoming). 

2.9.2 Procedure 

Defining a composite error-behavior model requires 
1. an error behavior for the root component and its subcomponents 

Comment [PR1]: Should it be “an in error 
propagation or error event”? Compare it to “out 
error-propagation” in step 4. 
 
tmk: ok as is? 
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2. a composite error behavior section that defines all the Composite states (A Composite state 
defines the component state according to the state of its subcomponents.) 

2.9.3 Constraints 

Users can define a composite error behavior only for a component implementation. The reason is 
that only the component implementation contains subcomponents. As the composite error behav-
ior makes use of them, it makes sense to use them only with a component implementation. 

2.9.4 Example 

In the following example, we define a temp_regulator system that is composed of two sub-
systems: one thermostat t1 and one thermostat t2. The main component (temp_regulator) is con-
sidered as failing if one of its subcomponents is failing also. Otherwise, as long as one thermostat 
is operating, we consider the main system operational. 

To capture that, the main component (temp_regulator) defines a composite error behavior state 
machine that defines the condition for being in the Operational or Failed state: 
• The component is in the Operational state if one subcomponent is in the Operational state. 

• The component is in the Failed state if both subcomponents are in the Failed state. 

The following model shows how to use the Error Model Annex syntax to declare this system. 

package composite_section 
public 
 with EMV2; 
   
 device thermostat 
   annex EMV2{**  
  use behavior ErrorModelLibrary::Simple;   
 **}; 
 end thermostat; 
  
 system temp_regulator 
   end temp_regulator;  
   
 system implementation temp_regulator.i 
     subcomponents 
  t1: device thermostat; 
  t2: device thermostat; 
 annex EMV2{**  
  use behavior ErrorModelLibrary::Simple; 
  composite error behavior 
  states 
   [t1.Operational or t2.Operational]-> Operational;  
   [t1.Failed and t2.Failed]-> Failed; 
  end composite;   
 **}; 
   end temp_regulator.i; 

end composite_section; 

Listing 14: Definition of a Composite Error Model 
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2.10 Hazards Property 

2.10.1 Definition 

The Hazards property is used mostly to generate safety-related documentation (such as the FHA). 
It can be attached to error states, error events, or error propagations. The property is list of 
record values that have several fields: 
• Cross-reference: string value for a cross-reference into an external document  

• Phases: list of string values to identify the operational phases (modes) in which the hazard is 
relevant. Because this is a list, it can reference several phases for the same hazard (for exam-
ple, in the context of avionics systems, takeoff and landing). 

• Environment: string value to describe the operational environment in which the hazard is 
relevant 

• Likelihood: label (A, B, C, D, E) that specifies how likely an error event will occur. Stand-
ards-specific constants map standards likelihood descriptions to appropriate (probabilities) 
values. 

• Severity: integer that specifies the severity of a hazard. The value ranges from 1 (very criti-
cal) to 5 (low critical). Standards-specific constants map standards severity descriptions to 
appropriate number values. 

• Description: string value providing a textual description of the hazard 

• Verification method: string value to textually describe the verification method used to ad-
dress the hazard 

• Risk: string value to textually describe the potential risk of the hazard 

• Comment: string value to textually describe additional comments about the hazard 

The Severity field is an integer value to indicate the severity level of the hazard, ranging from 1 
(high) to 5 (low). MIL-STD-882D suggests descriptive labels (Catastrophic, Critical, Marginal, 
and Negligible). The ARP4761 defines descriptive labels (Catastrophic, Hazardous, Major, Mi-
nor, and NoEffect). For adapting the EMV2 annex to each safety standard, we introduce standard-
specific notations. The severity values specific to MIL-STD-882D are shown in Listing 15.  

property set MILSTD882 is 
   Catastrophic   : constant aadlinteger => 1; 
   Critical       : constant aadlinteger => 2; 
   Marginal       : constant aadlinteger => 3; 
   Negligible     : constant aadlinteger => 4; 
end MILSTD882; 

Listing 15: Definition of the MIL-STD-882D−Specific Severity Properties 

The severity values for ARP4761 are shown in Listing 16.  
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property set ARP4761 is 
   Catastrophic   : constant aadlinteger => 1; 
   Hazardous      : constant aadlinteger => 2; 
   Major          : constant aadlinteger => 3; 
   Minor          : constant aadlinteger => 4; 
   NoEffect       : constant aadlinteger => 5; 

end ARP4761; 

Listing 16: Definition of the ARP4761-Specific Severity Properties 

As with the Severity field, the Likelihood field is the likelihood with which the hazard occurs. 
Likelihood is expressed with a label in terms of levels ranging from A (high) to E (low). Each 
level typically has an associated probability of occurrence (p) threshold. The Likelihood property 
is defined under the EMV2 namespace. Then, the annex includes standards-specific values for 
mapping standards values to the annex. The MIL-STD-882D standard suggests likelihood levels 
for probability of occurrence over the life of an item: 
• Frequent: p > 10−1 

• Probable: 10−1 > p > 10−2 

• Occasional: 10−2 > p > 10−3 

• Remote: 10−3 > p > 10−6 

• Improbable: p < 10−6 

To have consistent wording between the standard and the model, use the values in Listing 17 for 
the MIL-STD-882D Likelihood property.  

property set MILSTD882 is 
Frequent    : constant EMV2::LikelihoodLabels => A; 
Probable    : constant EMV2::LikelihoodLabels => B; 
Occasional  : constant EMV2::LikelihoodLabels => C; 
Remote      : constant EMV2::LikelihoodLabels => D; 
Improbable  : constant EMV2::LikelihoodLabels => E; 

end MILSTD882; 

Listing 17: Definition of the MIL-STD-882D−Specific Likelihood Values 

The ARP4761 and DO178 standards define descriptive labels for probability of occurrence per 
operational hour: 
• Probable: p > 10−5 

• Remote: 10−5 > p > 10−7 

• ExtremelyRemote: 10−7 < p < 10−9 

• ExtremelyImprobable: p < 10−9  

To reflect this wording, the Likelihood values for ARP4761 appear in Listing 18.  
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property set ARP4761 is 
Probable            : constant EMV2::LikelihoodLabels => A; 
Remote              : constant EMV2::LikelihoodLabels => B; 
ExtremelyRemote     : constant EMV2::LikelihoodLabels => C; 
ExtremelyImprobable : constant EMV2::LikelihoodLabels => D; 

end ARP4761; 

Listing 18: Definition of the ARP4761-Specific Likelihood Values 

The Hazards property is used especially to generate the Functional Hazard Assessment (FHA) 
required by certification standards (such as ARP4761). When the tools analyze the component, 
the property is read to generate the spreadsheet that contains all faults and their associated infor-
mation. As a consequence, this property can be used for all Error Model Annex artifacts reported 
in the FHA. Error-model-specific properties and the Hazards property are discussed in Architec-
ture Fault Modeling (Delange, forthcoming). 

Also, because users can attach several hazards to the same error-model-related artifact, the proper-
ty is defined as a list so that users can specify several hazards for the same error-related artifact. 

2.10.2 Procedure 

To declare the property, users associate it with its related error-model artifact within the Error 
Model Annex declaration. Specifically, users employ the applies to keyword to reference the er-
ror-model element associated with the property value. When referencing an error type of the ele-
ment, users distinguish the error type with a dot (.). 

2.10.3 Constraints 

There is no specific constraint for the Hazards property. 

2.10.4 Example 

The following example defines the property on two events. That will then add these events into 
the FHA and fill the report with this information. 

device battery 
features 
   socket : provides bus access common::power.generic; 
annex EMV2{** 
   use types error_library; 
   use behavior error_library::simple; 
 
   error propagations 
      socket : out propagation{NoPower}; 
   flows 
      f1 : error source socket{NoPower}; 
   end propagations; 
    
   component error behavior 
   events 
      Depleted : error event; 
      Explode  : error event; 
   end component; 
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   properties 
      EMV2::hazards =>  
      ([crossreference => "ARP4761 page 277 figure 9"; 
       failure => "Loss of one power source,  
                   might be critical if both are lost (primary and redun-
dant)"; 
       phases => ("Landing","RTO"); 
       description => "Loss of Electrical Power to BSCU"; 
       comment => "Major hazard if both power are lost"; ]) 
      applies to socket.NoPower; 
       
      EMV2::hazards =>  
       ([crossreference => "TBD"; 
        failure => "Battery Explode"; 
        phases => ("all"); 
        description => "Battery Explode, major hazard"; 
         comment => "Have a physical impact on the surrounding compo-
nents";]) 
      applies to Explode; 
  
      EMV2::hazards =>  
       ([crossreference => "TBD"; 
       failure => "Battery Depleted"; 
       phases => ("all"); 
       description => "No more power in the battery"; 
       comment => "Can be an issue if redundant battery is failing al-
so";]) 
      applies to Depleted; 
**}; 
end battery; 

Listing 19: Use of the Hazards Property 

2.11 OccurrenceDistribution Property 

2.11.1 Definition 

The OccurrenceDistribution property specifies the probability of an error event or an error propa-
gation. It can be associated with error propagations, error states, and error events. When asso-
ciated with an error event or outgoing error propagation, it represents the probability that the 
error propagation or the event will occur. When associated with a state, it represents the proba-
bility of being in that state. When associated with an incoming error propagation, it represents 
the probability of receiving the error. Error-model-specific properties and the OccurrenceDistri-
bution property are discussed in Architecture Fault Modeling (Delange, forthcoming). 

The OccurrenceDistribution property is a record that defines 
• a distribution function. Several rules have been specified by the standard (such as fixed, 

Poisson, or stochastic; a complete list is included in the standard). 

• a value that represents the likelihood or rate of occurrence according to the specified distri-
bution function 
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2.11.2  Procedure 

To declare the property, users associate it with its related error-model artifact within the Error 
Model Annex declaration. Specifically, users employ the applies to keyword to reference the er-
ror-model element associated with the property value. When referencing an error type of the ele-
ment, users distinguish the error type with a dot (.). 

2.11.3 Constraints 

There is no specific constraint for the OccurrenceDistribution property. 

2.11.4 Example 

In the following example, we define the property for the occurrence of the NoPower error type on 
the socket bus access of the component battery. 

device battery 
features 
   socket : provides bus access common::power.generic; 
annex EMV2{** 
   use types error_library; 
   use behavior error_library::simple; 
 
   error propagations 
      socket : out propagation{NoPower}; 
   flows 
      f1 : error source socket{NoPower}; 
   end propagations; 
   properties 
      EMV2::OccurrenceDistribution =>  
       [ProbabilityValue => 1.35e-5; 
        Distribution => Fixed;] 
      applies to socket.NoPower; 
**}; 
end battery; 

Listing 20: Use of the OccurrenceDistribution Property 
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3 OSATE Tool Set 

The OSATE tool set provides several functions for automating the production of safety-related 
documentation. In particular, for the ARP4761 standard, it can generate the following: 
• Functional Hazard Assessment (FHA) 

• Fault Tree Analysis (FTA) 

• Failure Modes and Effects Analysis (FMEA) 

• Markov Analysis (MA) 

• Dependence Diagram (DD), referenced here as a Reliability Block Diagram (RBD) 
It also provides several functions to analyze the consistency between the error-model artifacts and 
the core AADL model. The functions are available in the Analysis menu of OSATE, under the 
submenu Fault Analyses, as shown in Figure 6. 

 

Figure 6: OSATE Functions for Consistency Analysis 

The OSATE analysis plug-ins are early prototypes for the purposes of demonstration only. As 
prototypes, they require additional evaluation and testing, especially concerning their application 
to large, complex systems. We list known limitations and constraints at the end of each section 
describing the plug-ins. Additional development and testing are under way. 

3.1 Functional Hazard Assessment Support 

The FHA, not to be confused with Fault Hazard Analysis (see the FAA System Safety Handbook 
[FAA 2000]), is defined as part of SAE ARP4761. It is a systematic examination of systems and 
subsystem functions to identify and classify failure conditions of those functions according to 
their severity.  

We support this process by working with specifications of the system or subsystems of interest 
expressed as component type descriptions for all component categories in AADL, ranging from 

CMU/SEI-2014-TR-020 | 24  



 

system and process to processor and device. We will then attach information relevant to an FHA 
through EMV2 subclauses and property associations.  

We use the EMV2 subclause to declare for each component the relevant outgoing error propaga-
tions and identify those outgoing error propagations that are error sources. In the error source 
declaration, we may identify the error source as an error state or as an error-type set (set of 
type tokens). Those are the entities that represent potential hazards to other components or the 
environment.  

EMV2 includes a set of properties that are defined in the property set EMV2. We use the Hazards 
property to characterize the fault. Section 2.10 explains how to use them in the model.  

These properties allow modelers to provide descriptive hazard information within the model. The 
property values are associated with error propagations and events of components. They are de-
clared in the properties section of EMV2 subclauses. They can be declared for component types 
or implementations; in this case, they apply to all instances of components of this type. Or they 
can be declared for specific subcomponents; for example, the hazard description can be specific to 
the context of the subcomponent (component instance).  

The path in the applies to clause of the property association identifies the specific target of the 
hazard description. The path is a (.)-separated list of identifiers. The path may start with zero or 
more subcomponent identifiers, starting with a subcomponent in the component whose error-
annex subclause contains the property association. The path is followed by an error-propagation 
identifier or error-source identifier and optionally an error-type identifier. The error propagation 
or error source must be of the last subcomponent in the path or the component classifier (type or 
implementation) that contains the error-annex subclause. 

3.1.1 Processed Modeling Patterns 

In order to generate the FHA from the AADL model, the following information must be defined 
(as shown in Table 1): 
• points of failure: outgoing error propagations (as defined in Section 2.1) or error events 

(as defined in Section 2.5) 

• Hazards properties associated with each point of failure (as explained in Section 2.10) 

3.1.2 Example Model 

The model shown in Listing 21 illustrates an example hazard specification. The Hazard property 
is associated with the error-behavior state that is the error source. Such hazard specifications are 
characterized by severity and criticality. Our GitHub public example repository provides addi-
tional models [GitHub 2013].  
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device PositionSensor 
  features 
    PositionReading: out data port ; 
  flows 
    f1: flow source PositionReading{ 
      Latency => 2 ms .. 3 ms; 
      }; 
  annex EMV2{** 
    use types ErrorLibrary; 
    use behavior ErrorModelLibrary::Simple;  
    error propagations  
        PositionReading: out propagation {ServiceOmis-
sion,ValueError,ItemOmission}; 
    flows  
      ef1:error source PositionReading{ServiceOmission} when Failed; 
      ef2:error source PositionReading{ValueError} when Failed; 
      ef3:error source PositionReading{ItemOmission} when Failed; 
    end propagations; 
    properties 
      EMV2::severity => 1 applies to ef1.Failed; 
      EMV2::likelihood => 3 applies to ef1.Failed; 
      EMV2::hazards =>  
 ([ crossreference => "1.1.1"; 
  failure => "Loss of sensor readings"; 
  phases => ("all"); 
  description => "No position readings due to sensor failure"; 
  comment => "Becomes major hazard, if no redundant sensor"; 
      ]) 
      applies to ef1.Failed; 
    **}; 
  end PositionSensor; 

Listing 21: Definition of the Hazard, Likelihood, and Severity Properties 

3.1.3 Fault and Hazard Analysis Report Example 

From the previous component definition, OSATE can automatically produce the FHA report, as 
shown in Figure 7. The FHA report includes catastrophic and critical hazards. The other hazards 
remain in the model for safety analysis activities in later phases.  

 

Figure 7: OSATE’s Functional Hazard Assessment Report 

In producing the report, OSATE processes each component instance in a system instance model 
that has an EMV2 subclause with an error propagations section. Then, the tool processes every 
error source from the flows declarations, either incoming propagations or error events.  
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3.2 Fault Tree Analysis Support 

3.2.1 Introduction 

FTA is a graphical representation of the faults that contribute to generate a failure. Several safety 
and reliability evaluation processes, such as ARP4761, use this type of analysis. The following 
paragraphs explain the mapping rules between an AADL model and its Error Model Annex into a 
fault tree representation.  

3.2.2 Using the Fault Tree Analysis Generator 

To use the FTA generator, users select a system instance and invoke the FTA tool on the root sys-
tem. A dialog box will ask for the error state (in terms of component behavior state) that corre-
sponds to the error, as shown in Figure 8.  

 
Figure 8: Error State for the Fault Tree Analysis 

OSATE then produces the file in the reports subdirectory, as shown in Figure 9.  

 
Figure 9: OSATE’s Reports Subdirectory 

The tool generates two types of files:  
1. OpenFTA format, suitable for use directly in OpenFTA [OpenFTA 2013], with the file ex-

tension .fat 
2. a generic Extensible Markup Language (XML) format that can be exported to other com-

mercial tools, with the file extension .xml 

3.2.3 Mapping to OpenFTA Format File 

The mapping to OpenFTA provides the ability to use the FTA capability of an open-source tool. 
Even if this tool has some limitation, it is a convenient way to visualize the fault tree of the sys-
tem. Once the report is generated, users can use it directly within OpenFTA. Figure 10 shows one 
example of an exported model.  
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Figure 10: Fault Tree Analysis as Shown in OpenFTA 

3.2.4 Mapping to Generic XML Format 

Most FTA tools are proprietary and use a specific format. Thus, exporting the AADL notation 
into a tool requires producing a file using a specific format. One solution is to use a general-
purpose, open file format that can be processed to export into a specific representation for each 
FTA-related tool.  

The XML file is composed of one or several XML nodes called event nodes that may contain 
event children nodes. The event node may have the following attributes:  
• id (required): unique identifier of the event 

• description (optional): description of the event 

• type (optional): indication of whether the event is a composite of other events. If present, the 
value can be one of the following:  
1. and: The event sub-items are required in order to trigger the current event. 
2. or: Only one event from the event’s sub-items must be triggered in order to trigger the 

current event. 

• probability (optional): probability that the current event occurs 

3.2.5 AADL and FTA Mapping Rules 

To generate an FTA, the tool needs the following information, as summarized in Table 1: 
• composite error behavior 

• incoming error propagation 

• error events 
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• error states 

• error transitions 
• OccurrenceDistribution property on error events and incoming error propagation 

OSATE processes the composite error behavior to produce to an FTA. The tool walks through the 
architecture from the state specified by the user, browses the subcomponent hierarchy for each 
referenced component, and processes the following elements: 
• component error behavior: analysis of the error event and incoming error propagation that 

contribute to switch the component on the referenced state 

• composite error behavior: references to the subcomponents that may trigger a switch to a 
particular error state. The tool will then browse recursively all subcomponents and show 
their contribution to the actual error or fault. 

As a consequence, in order to generate a complete FTA, the initial component must have a com-
posite error behavior that references its subcomponents. Leaves of the fault tree (component not 
having any subcomponents) shall specify their internal error events and error behavior with tran-
sitions. The tool will visit all subcomponents that have composite error behavior and add them to 
the fault tree. It will also add events and error propagations that contribute to the analyzed state. 
Listing 22 provides an example of an XML file produced for an FTA tool. 

<event id="Failed state"  type="or"> 
   <event id="Failed/AircraftFMS_i_Instance" 
          type="and"  
          description=""description from aircraft failure""> 
      <event id="Failed/Actuator1"   
             description=""description from actuator failure""> 
      </event> 
      <event id="Failed/Actuator2" 
             description=""description from actuator failure""> 
      </event> 
   </event> 
   <event id="Failed/PositionSensor" 
          description=""description from sensor failure""> 
   </event> 
</event>> 

Listing 22: XML Notation of the FTA 

3.2.6 Issues and Known Limitations 

When installing the external third-party tool OpenFTA, users may encounter an error. On Win-
dows 7, users can right click on the installer and change the compatibility options, making sure to 
execute the software under the Windows 2000 compatibility mode. This is a prototype function 
that is still under development; for example, more experience with the tool on large models is re-
quired. 
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3.3 Failure Modes and Effects Analysis Support 

The goal of the Fault Impact Analysis is to trace the error paths between the error source and 
the affected component. Used with the FHA, it provides valuable information for evaluating sys-
tem safety. In particular, it expands the error sources listed in the FHA and lists them with all the 
errors that they can trigger within the architecture. Thus, users can then see the fault impact across 
the overall architecture.  

To use the function, users select the system instance file and click the FaultImpact menu item in 
the Safety Analysis menu, as shown in Figure 11.  

 
Figure 11: Fault Analyses Menu in OSATE 

This produces a comma-separated values (CSV) file that contains all the error paths within the 
architecture. It can be imported into Excel. Figure 12 shows the file hierarchy of the AADL in-
stance model and all reports that are created by safety-related analysis tools. OSATE produces the 
FMEA-related documents in the FaultImpact subdirectory. 

 
Figure 12: File Hierarchy Containing Error-Related Reports 

The Fault Impact Analysis retrieves all components that have outgoing error propagations and 
identifies all error paths starting from each of the components with outgoing error propaga-
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tions. Then, it logs all the components across the error paths so that users can check the potential 
impacts of a fault occurring in that component.  

In order to generate the FMEA, the model should define the following artifacts (as detailed in Ta-
ble 1): 
• error propagations (incoming and outgoing) 

• error events 
• error paths (error source, error path, and error sink) 

• component behavior transitions 
• component behavior propagations 

The analysis retrieves all error sources of all instance components and reports all flows across 
the architecture. To do so, it uses various elements of the error such as the error path (with the 
transformation rules), the incoming error source and sink, and the propagation rules across 
component bindings. 

3.4 Dependence and Reliability Block Diagram Support 

3.4.1 Introduction 

An RBD is a graphical representation that captures the composite reliability of a system using the 
characteristics of the system’s components and their interrelationships. Each component is treated 
as an isolated unit (a block) represented by a rectangle that is assigned a reliability, failure rate, or 
failure probability value (unreliability). The rectangles are interconnected by lines that define reli-
ability dependencies dictated by the system architecture. We focus on RBDs with simple parallel 
or series configurations. An example RBD is shown in Figure 13.3 

 

Figure 13: Redundant Controller Architecture RBD 

If a failure rate is assigned to each component, users can analyze the RBD to assess the composite 
failure rate. Alternatively, the reliability or failure probability over a specified time frame can be 
assigned to each component (e.g., the failure probability over a 10-hour flight of an aircraft). Us-
ing these reliability values, analysts can calculate the reliability or failure probability of the com-
plete system. When using the failure rate, an exponential, component lifetime distribution is 

3  Some RBD notations use arrows to show the flow of data. 

Controller1 

Controller3 

Sensor1 

Sensor2 

Signal 
Selection Controller2 

Actuator1 

Actuator2 
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assumed such that the failure rates are constant. When using reliability or failure probabilities, a 
constant failure rate assumption is not required for the RBD analysis. 

To understand how the RBD is used to produce the reliability metrics of the system, consider the 
redundant sensor-controller-actuator architecture shown in Figure 13. This system is a triple-
redundant controller system with dual-redundant sensors and actuators. It is assumed that only 
one component of a parallel redundant set is needed to provide the required functionality. 

To analyze this RBD, users calculate a reliability value for each parallel grouping of blocks. For 
this example, the reliability value consists of computing a combined reliability for the sensor, con-
troller, and actuator grouping shown in Figure 13. The analysis treats each parallel grouping as a 
single block (combined block) with the calculated reliability, and the remaining individual blocks 
and all of the combined “parallel” blocks as a series. This combined configuration is shown in 
Figure 14 for the redundant controller system of Figure 13. 

 
Figure 14: Combined RBD 

Use the equations summarized in Table 2 to determine the composite reliability, failure rate, or 
failure probability for the system. 

Table 2: RBD Failure Rate Equations 
Reliability R and failure probability F are related by 

𝑅𝑅 = 1 −  𝐹𝐹 
For a parallel interconnection, the total failure probability Ftp is the product of the failure probabilities of each com-
ponent:  

𝐹𝐹𝑡𝑡𝑡𝑡 = �𝐹𝐹𝑖𝑖
𝑖𝑖

  

For a series, the total reliability 𝑅𝑅𝑡𝑡𝑡𝑡 is the product of the reliabilities of each block 𝑅𝑅𝑖𝑖: 

𝑅𝑅𝑡𝑡𝑡𝑡 =  �𝑅𝑅𝑖𝑖 ,
𝑖𝑖

  where 𝑅𝑅𝑖𝑖 = (1 − 𝐹𝐹𝑖𝑖) 

For an exponential lifetime distribution, the reliability R is given by R = e –λt, where λ is the failure rate. 
A total failure rate can be calculated for the system by integrating the composite system reliability over time (t) to 
determine the mean time to failure (MTTF), where 

1
𝜆𝜆𝑡𝑡

= 𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹 =  � 𝑅𝑅𝑡𝑡
∞

0
 𝑑𝑑𝑑𝑑  

3.4.2 Processed Modeling Patterns 

To generate the RBD for a component with Error Model Annex information, the model must con-
tain the following information, as summarized in Table 1: 
• error states 
• composite error model 

• OccurrenceDistribution property on each of the error states 

Controllers Actuators Sensors Signal Selection 
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3.4.3 Algorithm 

To express the RBD for a system in AADL, it is helpful to recognize that only a failure of all the 
elements in a parallel block results in the failure of that block and that the failure of any individual 
or combined parallel block will result in total system failure. For example, Table 3 presents the 
AADL error model for the RBD of a redundant processor system. The lower portion of the table 
shows the AADL graphic for the system. The declarations within the states subsection of the 
composite error behavior section define the component conditions for the system to be in the 
failed state. For example, for the dual sensors, both must fail for the system to fail. In contrast, if 
the signal_select component fails, the entire system fails. The OccurrenceDistribution property 
association assigns a failure probability that the component is in the failed state. For example, the 
probability of a failure of an aircraft’s GPS unit over a 10-hour flight may be one in a million (i.e., 
ProbabilityValue  => 10−6).  

Table 3: Composite System Error Behavior for a Redundant Control System Architecture  

annex EMV2{** 
use types ErrorModelLibrary; 
use behavior ErrorModelLibrary::simple; 
composite error behavior 
states 
  -- redundant parallel blocks 
  [sensor1.failed and sensor2.failed]->failed; 
  [control1.failed and control2.failed and control3.failed]-> failed; 
  [actuator1.failed and actuator2.failed]->failed; 
  -- single blocks  
  [signal_select.failed]-> failed; 
end composite;  
properties 
  EMV2::OccurrenceDistribution =>  
  [ ProbabilityValue => 3.0e-4 ; Distribution => Fixed;] applies to sen-
sor1.failed; 
  EMV2::OccurrenceDistribution => 
  [ ProbabilityValue => 0.00003 ; Distribution => Fixed;] applies to sen-
sor2.failed; 
  EMV2::OccurrenceDistribution =>  
 [ ProbabilityValue => 0.000001 ; Distribution => Fixed;] applies to con-
trol1.failed; 
  EMV2::OccurrenceDistribution =>  
 [ ProbabilityValue => 0.000001 ; Distribution => Fixed;] applies to con-
trol2.failed; 
  EMV2::OccurrenceDistribution =>  
 [ ProbabilityValue => 0.000001 ; Distribution => Fixed;] applies to con-
trol3.failed; 
  EMV2::OccurrenceDistribution =>  
 [ ProbabilityValue => 0.00002 ; Distribution => Fixed;] applies to actua-
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tor1.failed; 
  EMV2::OccurrenceDistribution =>  
 [ ProbabilityValue => 0.00002 ; Distribution => Fixed;] applies to actua-
tor2.failed; 
  EMV2::OccurrenceDistribution =>  
  [ ProbabilityValue => 0.000001 ; Distribution => Fixed;]  
  applies to signal_select.failed; 
**}; 

 

Figure 15 shows the results for the example. 

 

Figure 15: RBD Results 

3.4.4 Example 

The following example is composed of three devices: a sensor and two actuators. The system is 
operational as long as a sensor is operational and at least one actuator is operational. All devices 
are associated with the same processor. Figure 16 shows the graphical instance model.  
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Figure 16: Graphical Instance Model for the RBD Analysis 

Then, using the RBD function from the tool framework, we can compute metrics that show the 
probability of having (or not) failures. Figure 17 shows the result of our plug-in on the following 
example (see Figure 16). The result shows the metrics and which components are used to produce 
the metrics so that the user can also check that all components are being processed correctly.  

 
Figure 17: Result of the Plug-in on the RBD Analysis 

The AADL textual model in Listing 23 gives an overview of the definition of the main system 
instance.  

  system implementation AircraftFMS.i 
    subcomponents 
      PositionSensor: device PositionSensor; 
      Actuator1: device Actuator ; 
      Actuator2: device Actuator ; 
      FMSProcessor: processor PowerPC; 
    connections 
      sensedPosition: port PositionSensor.PositionReading  -> Actua-
tor1.ActCmd; 
      Actuator2Cmd: port PositionSensor.PositionReading -> Actua-
tor2.ActCmd; 
 properties  
  Actual_Processor_Binding => (reference (FMSProcessor)) ap-
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plies to PositionSensor; 
  Actual_Processor_Binding => (reference (FMSProcessor)) ap-
plies to Actuator1; 
  Actual_Processor_Binding => (reference (FMSProcessor)) ap-
plies to Actuator2; 
annex EMV2{**  
 use behavior ErrorModelLibrary::Simple; 
 composite error behavior 
  states 
   [PositionSensor.Operational and (Actuator1.Operational 
or Actuator2.Operational)]-> Operational; 
   [Actuator1.Failed and Actuator2.Failed]-> Failed; 
   [PositionSensor.Failed]-> Failed; 
  end composite;   
 properties  
  EMV2::OccurrenceDistribution => [ ProbabilityValue => 0.1 ; 
Distribution => Fixed;] applies to Actuator2.Failed; 
  EMV2::OccurrenceDistribution => [ ProbabilityValue => 0.2 ; 
Distribution => Fixed;] applies to Actuator1.Failed; 
  EMV2::OccurrenceDistribution => [ ProbabilityValue => 0.5 ; 
Distribution => Fixed;] applies to PositionSensor.Failed; 
  EMV2::OccurrenceDistribution => [ ProbabilityValue => 0.3 ; 
Distribution => Fixed;] applies to FMSProcessor.Failed; 
   
 **}; 

  end AircraftFMS.i; 

Listing 23: AADL Model with Appropriate Error-Model Constructs for the Reliability Block Diagram Anal-
ysis 

In this model, we have the following fault occurrence for failure:  
1. Position Sensor: 0.5 
2. Actuator1: 0.2 
3. Actuator2: 0.1 
4. The reliability is computed as follows: Reliability = 1 – Failure Probability.  

The following steps explain how to do the computation for this example:  
• Failure (Actuator) = Failure (Actuator1) * Failure (Actuator2) = 0.02 

• FailureProbability = 1 − Failure (PositionSensor) − Failure (Actuator) + Failure (Posi-
tionSensor) * Failure (Actuator) 

• FailureProbability = Failure (PositionSensor) + Failure (Actuator) − Failure (PositionSensor) 
* Failure (Actuator) 

• FailureProbability = 0.5 + 0.02 − 0.01 = 0.51 

For this example, the following rules must be observed to compute reliability-related metrics:  
1. faults in series: Add the failure probabilities, and subtract their product. 
2. faults in parallel: Multiply the probability of failure. 
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3.4.5 Known Issues and Limitations 

The tool requires a fixed probability where the ProbabilityValue represents the failure probability 
for the component. It does not work with error propagations, and computation involves only 
occurrence values associated with states. 

3.5 Markov Analysis Support 

A Markov process is a random (stochastic) process in which probability distributions for the fu-
ture behavior of a system do not depend on the history of the system. A Markov chain is a Mar-
kov process that represents system behavior in terms of random transitions between discrete 
states. If time is modeled as continuous, the representation is a continuous-time Markov chain 
(CTMC). If time is modeled as discrete, the representation is a discrete-time Markov chain 
(DTMC). Markov chains can be used to analyze system reliability in terms of error states, occur-
rences, and propagations. 

3.5.1 Continuous-Time Markov Chains 

Users can use a CTMC to determine the reliability and, if recovery or repair is included, the avail-
ability of a system. For example, consider the dual-sensor components of the control system 
shown in Figure 18. Users can model the error behavior of these sensors as three discrete states: 
neither sensor failed, one failed, or both failed. In the state diagram of Figure 18, these states are 
labeled as states 0, 1, and 2, respectively. The transitions from the states 0 and 1 are labeled with 
failure rates λ0 and λ1, respectively.  

0 1 2

λ0 λ1

 
Figure 18: Dual-Sensor Model with No Repair 

Users can solve for the probability that the system is in each of these states as a function of time. 
For example, if the system starts in state 0, the probability that the system is in state 0 or state 1 at 
some later time is the reliability of the dual-sensor system. 

If users include repair in the system, they can use a CTMC model to solve for the availability. 
Figure 19 shows a dual-sensor model with repair rate µ2. 
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0 1 2

λ0 λ1

µ2  
Figure 19: Dual-Sensor Model with Repair 

In both the model with and the model without repair, time is assumed to be continuous. To ana-
lyze either of these configurations and more complex systems (such as the complete redundant 
controller architecture discussed in Section 3.4), users can employ the AADL Error Model Annex 
within the OSATE tool to represent the system. Users can export the model to the PRISM tool for 
analysis. 

To develop a CTMC model using the AADL Error Model Annex, users define the failure rates 
and, as appropriate, the repair rates between states of the system using the OccurrenceDistribution 
property. This is done by assigning the failure rate or repair rate to the ProbabilityValue variable, 
declaring the Distribution as Poisson, and applying the property to the event that results in the 
transition. For example, for a burnout event that occurs at the rate of 3.0.10−7  

per hour, the OccurrenceDistribution property declaration is shown below: 

EMV2::OccurrenceDistribution =>  
                   [ ProbabilityValue => 3.0e-7; Distribution => Poisson;]  
                   applies to actuator.burnout; 

Consider the redundant controller architecture discussed in Section 3.4, which is shown graphical-
ly in the lower portion of Table 3. Users can modify the AADL representation shown in Table 3. 
(the one used for an RBD analysis) to conduct a CTMC analysis of the system, using OSATE and 
the PRISM tool. Users will need to modify the OccurrenceDistribution property, where the Prob-
abilityValue represents the transition rates for the CTMC; declare the Distribution as Poisson; and 
apply property values to the events that result in transitions rather than states. We show this in 
Listing 24, where we use a Poisson distribution instead of a Fixed distribution and assign the val-
ues to the failure event for each of the components that comprise the system. 

annex EMV2{** 
use types ErrorModelLibrary; 
use behavior ErrorModelLibrary::simple; 
 composite error behavior 
states 
-- redundant parallel blocks 
 [sensor1.failed and sensor2.failed]->failed; 
 [control1.failed and control2.failed and control3.failed]-> failed; 
 [actuator1.failed and actuator2.failed]->failed; 
-- single blocks  
 [signal_select.failed]-> failed; 
end composite;  

Comment [tmk2]: 3∙10−7 ? 
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 properties 
 EMV2::OccurrenceDistribution => [ ProbabilityValue => 3.0e-5 ; Dis-
tribution => Poisson;] applies to sensor1.failure; 
    EMV2::OccurrenceDistribution => [ ProbabilityValue => 0.00003 ; Dis-
tribution => Poisson;] applies to sensor2.failure; 
    EMV2::OccurrenceDistribution => [ ProbabilityValue => 0.000001 ; Dis-
tribution => Poisson;] applies to control1.failure; 
    EMV2::OccurrenceDistribution => [ ProbabilityValue => 0.000001 ; Dis-
tribution => Poisson;] applies to control2.failure; 
    EMV2::OccurrenceDistribution => [ ProbabilityValue => 0.000001 ; Dis-
tribution => Poisson;] applies to control3.failure; 
    EMV2::OccurrenceDistribution => [ ProbabilityValue => 0.00002 ; Dis-
tribution => Poisson;] applies to actuator1.failure; 
    EMV2::OccurrenceDistribution => [ ProbabilityValue => 0.00002 ; Dis-
tribution => Poisson;] applies to actuator2.failure; 
    EMV2::OccurrenceDistribution => [ ProbabilityValue => 0.000001 ; Dis-
tribution => Poisson;] applies to signal_select.failure; 

**}; 

Listing 24: Error-Annex Declarations for a CTMC Analysis 

Figure 20 graphically shows the results from the PRISM tool for the values shown in Listing 24. 
The graph presents the total probability of failure during continuous operation with no repair. 

 

Figure 20: Graphical Output of the PRISM Simulation 

3.5.2 Discrete-Time Markov Chains 

DTMC models define the states and transition probabilities between those states. For example, 
consider a discrete-state error model of a system that has only three states: Nominal, Bad Data, 
and Failed. The Bad Data state is the condition in which the system appears to operate correctly 
but outputs incorrect data. The failed state is the condition in which the system outputs no data. 
Figure 21 shows the state diagram for this system. The transitions between states are labeled with 
the probability for the transition. For instance, P12 represents the probability of a transition be-
tween the Nominal state (1) and the Bad Data state (2). 
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Figure 21: DTMC State Diagram 

Users can employ a DTMC to represent and analyze this system error model. While the states in 
the DTMC are the three states of the discrete-state error model, users need to make assumptions 
about the discrete time intervals. For example, one may assume that a discrete time interval is one 
day (i.e., the condition of the system is observed once a day). 

After users assume the one-day discrete time interval, a DTMC analysis requires specifying the 
transition probabilities per day from each state to every other adjacent state in the chain as well as 
backing into the state itself. Include these in a probability transition matrix, P. Since this is a Mar-
kov process, the values in the matrix P are the same for each time interval. 

If users let integers (1, 2, 3) represent the Nominal, Bad Data, and Failed states, respectively, they 
can structure the matrix P with rows and columns labeled in that order (i.e., a transition from 
Nominal to Failed is the element P13, and a transition from Bad Data to Failed is the element P23). 
Let the matrix P, listed below, represent the transition probability values for the system shown in 
Figure 21.  

𝐏𝐏 = �
. 9 . 05 . 05
. 6 . 2 . 2
. 6 0.0 . 4

� 

The convention is that the first row represents the transitions from the Nominal state. For exam-
ple, when the system is in Nominal, its probability to transition to the Failed state is 0.05 and the 
probability to remain in the Nominal state is 0.9. Similarly, the second row represents the proba-
bility values to transition out of the Bad Data state. For example, if the system is in the Bad Data 
state, its probability to transition to the Failed state is 0.2. Notice that there is no transition from 
Failed to Bad Data, indicated by the 0.0 value in the second column of the third row. This reflects 
the assumption that repairs always return the system to Nominal. 

When analyzing the system using its DTMC representation, users define the initial conditions 
using a vector that represents the probabilities that the system is in each state. For example, the 
vector u = [1.0, 0.0, 0.0] represents the initial condition that the system is in the Nominal state 
(i.e., the probability of Nominal is 1, and the probability of other states is 0). Users then multiply 
the vector by the P matrix to get a new vector that represents the probabilities of each state after 
the time interval, in our case one day. For our example, the vector is u1 = [.9, .05, .05], which is 
what we expect. To determine the probabilities at two days or more, the user repeatedly multiplies 
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by P. This can be represented by powers of P, where Pn is the probability matrix after n days. If 
one determines the powers of P, he or she can multiply the initial state vector into Pn to determine 
the probabilities after n days. Users can do these calculations manually or with a tool such as 
PRISM, an open-source probabilistic model checker that can be used to process Markov chains 
[Kwiatkowska 2011]. 

When developing a DTMC model using the AADL Error Model Annex, users define the failure 
and, as appropriate, the repair transition probabilities between states of the system, using the Oc-
currenceDistribution property. Users can export the model to the PRISM tool for formal analysis. 
Listing 25 presents the error-annex declarations for the example shown in Figure 21.  

annex EMV2{** 
 
use types ErrorModelLibrary; 
use behavior Error_Library::Three_State; 
 
 properties 
 -- add these for DTMC analysis 
 EMV2::OccurrenceDistribution => [ ProbabilityValue => 0.9 ; Distri-
bution => Fixed;] applies to P11; 
    EMV2::OccurrenceDistribution => [ ProbabilityValue => 0.05 ; Distribu-
tion => Fixed;] applies to P12; 
    EMV2::OccurrenceDistribution => [ ProbabilityValue => 0.05 ; Distribu-
tion => Fixed;] applies to P13; 
    EMV2::OccurrenceDistribution => [ ProbabilityValue => 0.6 ; Distribu-
tion => Fixed;] applies to P21; 
    EMV2::OccurrenceDistribution => [ ProbabilityValue => 0.2 ; Distribu-
tion => Fixed;] applies to P22; 
    EMV2::OccurrenceDistribution => [ ProbabilityValue => 0.2 ; Distribu-
tion => Fixed;] applies to P23; 
    EMV2::OccurrenceDistribution => [ ProbabilityValue => 0.6 ; Distribu-
tion => Fixed;] applies to P31; 
    EMV2::OccurrenceDistribution => [ ProbabilityValue => 0.0 ; Distribu-
tion => Fixed;] applies to P32; 
    EMV2::OccurrenceDistribution => [ ProbabilityValue => 0.4 ; Distribu-
tion => Fixed;] applies to P33; 

**}; 

Listing 25: Definition of the OccurrenceDistribution Property for Generating DTMC Markov Chains 

3.5.3 AADL Export to PRISM Function 

In order to perform a reliability/fault analysis of a system, formal method tools can be useful. To 
use them, an appropriate supporting tool needs to transform the architecture model into a repre-
sentation suitable for the model-checking tool. In our case, the OSATE AADL to PRISM export 
function transforms an AADL specification into a PRISM model, either a DTMC or CTMC mod-
el: 
• A DTMC model uses a transition probability for a fixed interval of time. To create a DTMC 

file, users specify the occurrence value with the Fixed distribution parameter and the appro-
priate transition probability.  

CMU/SEI-2014-TR-020 | 41  



 

• A CTMC model uses a rate based on a Poisson distribution. To create a CTMC file, users 
specify the occurrence value with a Poisson distribution and its associated rate parameter.  

Users can choose the target model in the Fault-Analysis tools preferences menu, as shown in Fig-
ure 22.  

 

Figure 22: Selection of the Markov-Chain Type 

To generate a PRISM model from an AADL model, users first select the instance AADL model 
and then invoke the PRISM menu option in OSATE, as shown in Figure 11. Once the PRISM 
model is created, it is available in a subdirectory called reports, as shown in Figure 23. Users can 
then open it in the PRISM tool. 

 

Figure 23: Files Hierarchy and the Produced PRISM File 

3.5.4 AADL and PRISM Mapping Rules 

The AADL to PRISM transformation tool translates an AADL model into a PRISM specification. 
To do so, it uses mapping rules for transforming the AADL components and their associated Error 
Model Annex information into PRISM constructs. Table 4 lists all mapping rules for transforming 
the AADL model into a PRISM notation. 

Table 4: Mapping Rules for the AADL to PRISM Transformation 

AADL Construct  PRISM Construct  

Composite behavior Formula to help the engineer use the PRISM model  

Component state 
Local variable of a module with component_name_state. The number of values 
depends on the number of states in the state machine associated with the compo-
nent. This variable is always initialized with 0.  
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Component state value 

Each state is translated into 
• a dedicated value, so that the PRISM component has an associated state val-

ue with a dimension defined by the number of states. The declaration of the 
state variable looks like the following:  
component_name_state: [0 .. NBSTATE] init 0; 

• a PRISM formula that helps to determine the current component state. For 
example, the following formula is defined to provide assistance for querying 
the model and determine whether the main system is in the Failed state: 

formula main_i_instance_is_failed = 
main_i_instance_state=1; 

Component instance A module  

Component OUT port Local variable in the module with a name component_name_portname  

Error propagation 

Values of local variables from a port into the component. This is declared as  

component_name_PORTNAME: [0 .. 
NB_ERROR_PROPAGATIONS] init 0; 

Component IN port Nothing. On the other hand, when the port is an in propagation and might trigger 
a state change, we use that when generating transitions.  

State transition because of an 
error event 

Command with probability. The probability value is deduced from the associated 
occurrence value from the AADL property OccurrenceDistribution:  

[] component_state=stateval ->  
   prob1 : (component_state:=newstateval) + 
   prob2: (component_state:=otherstateval) 

State change due to an incoming 
fault propagation 

Command with the name of the current state, the corresponding outgoing port 
from the sender component, or both:  

[] component_state=stateval &  
   sendercomponent_name_outportname=val  
     -> (component_state:=newstateval)  

out propagation on a port when 
the component is in a particular 
state 

Variable assignment while the component is in this state:  

[] statevar=stateval ->  

   prob1: (statevar:=newstateval) &  
          (portvar:=errorval) +    

   prob2: (statevar:=newstateval) & (port-
var=errorval2); 

3.5.5 Issues and Known Limitations 

The tool supports only the first nesting level of component hierarchy. It does not support different 
error types when analyzing component propagations and does not include component bindings. 
Also, there is currently no connection to the behavior annex to inject error- or behavior-related 
information between the two annexes. 

3.6 Error-Model Consistency 

Declaring errors using different notations (composite error model, component error model, etc.) 
might contribute to inconsistency and lead to misunderstandings and errors when analyzing the 
model. To overcome these potential issues, OSATE provides a model consistency function that 
analyzes the model and reports potential inconsistencies. To use the functionality, select the in-
stance model and invoke the “Consistency-Checks” Action from the Fault Analyses menu (as 
shown in Figure 11).  

Comment [JD3]: I do not really understand the 
comment. There is no bold used in the code. 
 
tmk: should this font be the same as for compo-
nent_name_state: [0 .. NBSTATE] 
init 0above or is the difference intended? 
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The analysis checks for the following rules and adds a message in the Eclipse error view when 
they are not enforced: 
1. Ensure error-source and error-sink compliance. This consists of ensuring that for each 

error source, there is an error sink at the end. The tool also checks that all types propagated 
from the error source are handled by the error sink or are being transformed with an error 
path.  
Note: When a system fails, the tool traverses all connection references of the connection in-
stance to check where the fault is not correctly handled.  

2. Transitions of error-component behavior use all incoming error propagations and er-
ror events. The tool ensures that each transition with the same state source and state destina-
tion uses all incoming error propagations and error events. Also, having only incoming error 
events can be valid only for an error sink, and the sink must be referenced within an error 
path.  

3. Outgoing propagations with an empty condition are error sources. When having an out-
going propagation without a condition, the tool checks that the outgoing propagation is an er-
ror source. It can be also referenced in an error path, but it must have an error source 
declaration. 

4. Outgoing propagations with a condition must have an associated flow path. When hav-
ing an outgoing propagation with a condition, the tool checks the following: 

a. If the condition contains a reference to an incoming error propagation, this must be de-
clared in an error path. 

b. The outgoing error propagation must be referenced within a path that also includes the 
incoming error propagation referenced in the conditions.  

5. In the component error behavior, there is a transition between each state. This corre-
sponds to the liveliness of the state machine; the tool checks that the state machine does not 
have dead state. This is a warning rather than an error because some architectures might re-
quire the use of dead states.  

6. All outgoing error-propagation conditions are complete. The tool addresses and covers 
all error types. For all outgoing propagation conditions, it makes sure that all outgoing prop-
agations are propagated with the appropriate error type.  

7. For error sinks, components do not propagate any errors. For an error sink, a transition 
can be triggered, but the error sink cannot be part of the error condition of an outgoing error-
propagation condition.  

8. An error source can be triggered by propagations only without any incoming error 
propagation. Check that an error source in the propagations section can be indicated only 
without incoming conditions or just with conditions representing an event. If there is a condi-
tion associated with an outgoing propagation condition, the element can be only an event. If 
there is an incoming error propagation, then Rule 7 will apply.  

9. There is no transition with the same condition and source state. Each transition in the 
component error state machine shall be independent. In other words, for each transition from 
state S1 to state S2, there must be a unique condition. There may be several transitions from 
S1 to S2, but their associated conditions must be different.  
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10. For each state transition, all elements are referenced. The tool checks that for each transi-
tion, all incoming propagations, their error events, and their associated types are correctly 
addressed.  

11. Composite error behavior indicates the condition for each state of the component. For 
each state of the component, the tool makes sure that the composite error behavior specifies 
the condition. This validates the completeness of the Composite Error state. 

12. Composite error behavior references all subcomponents. The tool makes sure that each 
Composite Error-Behavior state references all subcomponents. Thereby, it ensures that the 
state machine is not ambiguous.  

13. Composite error behavior checks compliance between the component state machine and 
composite error state machine. A state can have different definitions: one in the compo-
nent error state machine and another in the composite error state machine. The goal of this 
check is to make sure that the component state machine is consistent with the composite state 
machine.  

14. There are no undeclared error paths. Within an architecture, error paths could be missing 
and not declared, especially when aggregating or composing the architecture. This check 
aims at discovering these and warns the user of potential missing error paths.  

15. If a component declares an error path, any connection from the associated feature goes 
into a feature that is also an error sink. When a component declares an error sink as an er-
ror flow, the feature can be connected to a subcomponent, but the ultimate destination must 
be an error sink. The feature cannot be connected to a component that declares a single error 
flow. The failure must be handled within a subcomponent.  

Error-model consistency and other related topics, such as completeness of the error model, are 
also discussed in Architecture Fault Modeling (Delange, forthcoming).  

3.7 Unhandled Faults 

When reusing components in architecture, users may reuse their related error descriptions. How-
ever, when reusing a component, some faults propagated may not be handled by the components 
connected to it. Also, components that are connected may expect to receive fault types that are not 
propagated. For these reasons, OSATE provides a function that checks component connections 
and interactions and reports each error that is propagated but not handled. For example, if a com-
ponent propagates two types, EarlyDelivery and BadValue, and is connected to a component that 
receives only BadValue, the OSATE plug-in will report that the EarlyDelivery error type is not 
handled. 

To use this function, select the instance model and choose the UnhandledFaults menu item, as 
shown in Figure 11. It creates a report in a new directory and shows all reported errors in the 
Eclipse Problems View, as shown in Figure 24. 
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Figure 24: Report of Unhandled Error Types in Eclipse Problems View 
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4 Wheel Brake System Example 

The aircraft wheel brake system (WBS) is an example introduced in the ARP4761 and AIR6110 
standards [SAE 1996, 2011]. It defines the different steps and supporting documentation for eval-
uating system safety. It identifies the major process elements:  
• Functional Hazard Assessment (FHA) 

• Preliminary System Safety Assessment (PSSA) 

• System Safety Assessment (SSA) 

An FHA identifies and classifies the failure conditions associated with the aircraft functions. The 
failure condition classifications establish the safety objectives. The PSSA explores the proposed 
system architecture or architectures to determine how failures can cause the functional hazards 
identified by the FHA. It establishes the system safety requirements and assesses whether the pro-
posed architecture can be expected to meet the safety objectives identified in the FHA. The SSA 
is an evaluation of the system implementation against the safety requirements. In other words, it 
consists of ensuring that the system meets the safety objectives from the FHA and the safety re-
quirements from the PSSA. The standard defines the necessary information for each element of 
the process (FHA, PSSA, SSA, etc.) and details the level of information required (probability, 
name of the event, etc.) as well as the dependencies between them [SAE 1996]. 

The process encompasses outlining system hazards, failures, and recovery strategies. It lists the 
failure conditions through an FHA and identifies its contributing factors using Fault Tree Analysis 
(FTA), Markov Analysis (MA), or Decision Diagrams (DD). The procedure starts with high-level 
fault and failure identification and assessments. It then refines the system description by enhanc-
ing it with more detailed information. Engineers start to sketch system hazards and failures at a 
high level (for example, crash of the airplane) and refine the initial description by connecting 
them with related components (for example, crash because of failure of the WBS or the naviga-
tion system) and adding more information (for example, probability of a failure).  

In this section, we present the WBS used in ARP4761 and AIR6110 and explain how to conduct a 
safety analysis using AADL and OSATE. First, we overview the system, and then we present two 
versions of the system: 
1. a simple model that shows how to map the architecture into a single AADL model 
2. an advanced version that separates the functional definition from the implementation and 

binds the implementation to the functional definition to enhance and augment the infor-
mation included in safety evaluation documents. Such separation provides the ability to ana-
lyze each aspect (functional and implementation) separately. 

4.1 Overview 

The WBS aims to provide the necessary support for stopping an aircraft during landing or park-
ing. The system should operate correctly during all phases, even when the system is not supposed 
to operate. For example, we expect the system to act during landing or taxi but not during take-
off. The initial FHA of the system defines the failure condition (for example, loss of deceleration 
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capability), its associated phase (landing, taxi, etc.), and hazard classification (catastrophic, haz-
ardous, major, etc.). 

4.1.1 Wheel Brake System Architecture 

The high-level architecture of the system, as defined in AIR6110, consists of the following com-
ponents [SAE 2011, p. 42]: 
• a brake system control unit (BSCU) that interfaces with the other components and provides 

commands to the hydraulic pressure, antiskid system, and braking system and annunciation 
to the pilot 

• shutoff valves that respond to commands from the BSCU to apply hydraulic pressure to the 
braking discs 

• metering valves that control and maintain the pressure at the demanded level 

• an accumulator that provides an emergency reserve of hydraulic pressure 

• antiskid valves that control the hydraulic pressure to the braking pads and restrict the hydrau-
lic line pressure to the brakes in order to prevent locking of the wheels 

• a braking pedal that provides mechanical and electrical braking commands to the braking 
system and pedal force and position inputs to the BSCU, which uses these values to produce 
output to the shutoff and antiskid valves 

• a wheel brake that provides friction force to the wheel 

• a parking brake that provides braking while the aircraft is parked 

This architecture is refined by an implementation architecture with the following design decision: 
• The BSCU is replicated with a redundant system (BSCU1 and BSCU2). 

• Two independent hydraulic pistons (called Green Pump and Blue Pump) provide hydraulic 
supply to the wheels to meet the safety requirements (loss of all wheel braking is less proba-
ble than 5.10−7 per flight). 

The overall architecture is detailed in Section 4.4 of AIR6110 [SAE 2011]. In the following sec-
tions, we explain the mapping of this system into an AADL representation for two architectures, 
one that mixes functional and implementation concerns and another that refines the functional and 
implementation aspects and binds these models together to augment the system description. 

4.1.2 Safety Evaluation Materials 

As the AIR6110 and ARP4761 standards describe the application safety evaluation process, it 
provides an example of safety validation materials. The safety evaluation process provides the 
following materials: 
• Functional Hazard Analysis [SAE 2011, p. 35, Fig. 17] 

• FTA [SAE 2011, p. 49, Fig. 25] 

• Failure Modes and Effects Analysis (FMEA) [SAE 1996, Section L.4, p. 230] 

4.1.2.1 Functional Hazard Analysis 

The Functional Hazard Analysis shows the failure condition (hazard description) for each func-
tion [SAE 2011, p. 35, Fig. 17]. As the system focuses only on one function (“decelerate aircraft 

Comment [tmk4]: 5∙10−7 ? 
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using wheel braking”), it lists only failure conditions related to this function. For each failure con-
dition, it lists the phase, the effect on aircraft and crew, classification, references to supporting 
material, and verification method. 

4.1.2.2 Fault Tree Analysis 

The FTA focuses on the WBS. The AIR6110 standard shows the fault tree for the fault “Unan-
nunciated Loss of all Wheel Braking,” illustrating the condition for this fault to happen [SAE 
2011, p. 49, Fig. 25]. In this fault tree, the fault is raised if the system loses the capability of brak-
ing on all wheels. Then, the condition for an occurrence of the fault “Loss of All Wheel Braking” 
is itself decomposed into different fault occurrences: “no operation from the normal brake sys-
tem,” “alternative brake system does not operate,” and “emergency system does not operate.” In 
the fault tree, the emergency system is assumed to have failed. Thus, loss of all wheel braking 
occurs when both the normal and alternative braking systems fail. The complete fault tree then 
decomposes all faults, the leaf node being the failure of the BSCU system and the loss of electric 
capability. This top-to-bottom approach illustrates how a fault can be triggered, showing all de-
pendent failure conditions. 

4.1.2.3 Failure Modes and Effects Analysis 

The FMEA is presented in ARP4761. It shows the graphical flow from a failure to a high-level (or 
functional) failure. Contrary to the FTA, an FMEA is a bottom-up approach, starting from a low-
level fault and showing its impact on higher levels. 

4.2 Simple Model 

4.2.1 Overview 

In this section, we provide details on a basic AADL model of the WBS. The simple model cap-
tures the WBS architecture in a single AADL model. The model is available on the OSATE 
GitHub [GitHub 2013], and information to import the project is available on the AADL wiki 
[AADL Wiki 2013a] under the section dedicated to the WBS model [AADL Wiki 2013b]. 

The model is organized into several files, as shown in Figure 25, with one file for each compo-
nent. It clearly separates each component into a separate file and integrates them in a root system 
component. The resulting graphical model is shown in Figure 26. 

 

Figure 25: Files Hierarchy of the Model 
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Figure 26: Overview of the Complete Model of the WBS 

This main model comes in two versions, with the BSCU as the variability factor: 
1. One version uses a federated implementation of the BSCU with two physically separated 

CPUs, each one executing one instance of the BSCU. 
2. The other version uses an integrated modular avionics (IMA) implementation of the BSCU 

with one physical CPU executing the two instances of the BSCU (nominal and redundant). 

Figure 27 shows the graphical notation of the architecture of each BSCU. As pointed out before, 
because the variability factor is the executing processor, the change is the platform component at 
the lower left of the graphical diagrams, a single CPU versus two CPUs. 
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Integrated Modular Avionics Version Federated Version 

Figure 27: Variation of the BSCU Implementation 

4.2.2 Adding Faults and Errors Information in the AADL Model 

4.2.2.1 Defining Component Error Behavior and Associated Appropriate Properties 

The first step consists of defining the error behavior associated with each component. Two main 
error behaviors are defined: 
1. one generic with two states: Operational and Failed. This is used on all components that 

include an error-model subclause. 
2. one specific to the WBS: It defines one state for each failure condition of the FHA. 

Listings 26 and 27 show the Error Model Annex declarations for these behaviors. 

error behavior Simple 
states    
   Operational : initial state ; 
   Failed : state; 
end behavior; 

Listing 26: The Simple Error Behavior 
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error behavior WBS 
states 
   Operational    : initial state; 
   AnnunciatedBrakingLoss  : state; 
   UnannunciatedBrakingLoss  : state; 
   PartialBrakingLoss   : state; 
   AsymmetricLoss          : state; 
   InadvertentBrake   : state; 
end behavior; 

Listing 27: Error Behavior of the Top-Level System 

To generate the FHA information for the appropriate states, users need to associate the Hazard 
property with the states that appear in the generated document. To do so, we define the properties 
EMV2::Hazards in the instance model, as explained in Section 2.10. The OSATE tool will in-
clude states with these properties in the FHA. 

Listing 28 shows how to associate the properties with one state; the complete model defines the 
property for all component states. 

EMV2::severity => ARP4761::Hazardous applies to UnannunciatedBrakingLoss; 
EMV2::likelihood => ARP4761::ExtremelyImprobable applies to Unannunciat-
edBrakingLoss; 
EMV2::hazards =>  
   ([crossreference => "AIR6110 page 35 figure 17"; 
   failure => "Crew detect the failure when the brakes  
               are operated (unannunciated)"; 
   phases => ("Landing","RTO"); 
   description => "Total Loss of Wheel Braking"; 
   comment => "Reference to crew procedures  
               for loss of normal and reserve modes"; 
   ]) applies to UnannunciatedBrakingLoss; 

Listing 28: Definition of Severity, Likelihood, and Hazards Properties on Components 

4.2.2.2 Defining Error Sources 

To generate the propagation path of faults occurring within the architecture, users must define 
error sources, as discussed in Section 2.1. Error sources are associated with component features 
such as out data ports or component access. 

We define an error source for each component that generates an error. For example, the battery 
component has access to a shared power bus through an access feature called socket. Then, when 
the battery has some internal problem (battery explodes or is depleted) and becomes an error 
source, it generates a NoPower error to its connected components. To capture this design re-
quirement, we declare the access feature socket as an out propagation and an error source, as 
described in Section 2. 
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device battery 
features 
 socket : provides bus access common::power.generic; 
annex EMV2{** 
 use types error_library; 
 use behavior error_library::simple; 
 error propagations 
  socket : out propagation{NoPower}; 
 flows 
  f1 : error source socket{NoPower}; 
end propagations; 

Listing 29: Definition of Error Sources 

4.2.2.3 Defining Error Paths and Error Sink 

Once users have defined the error sources, they need to specify how the errors propagate through 
the architecture. For that purpose, users must define error paths and error sinks, as explained in 
Sections 2.3 and 2.4: 
• Error paths make explicit how errors propagate through a component from incoming to 

outgoing features. Each feature receives an error type and either propagates the same type or 
changes the type that it propagates. 

• Error sinks receive and handle an error. This represents the end of an error path. 

Listing 30 shows an example of an error path with a BSCU component propagating a NoValue 
error on the outgoing port valid when a NoPower error is propagated through its access connec-
tion to the power bus. This description means that when the component receives a NoPower event 
from its pwr feature, it transforms it into a NoValue error and propagates this type on the outgoing 
port value. It shows that when the BSCU has no power supply, it does not send a value. 

system implementation bscu_subsystem.generic 
features 
 pwr      : requires bus access common::power.generic; 
 pedal    : in data port common::command.pedal; 
 cmd_skid : out data port common::command.skid; 
 cmd_brk  : out data port common::command.brake; 
 valid    : out data port Base_Types::Boolean; 
annex EMV2{** 
 use types     error_library; 
 use behavior  error_library::simple; 
  
 error propagations 
  pwr       : in propagation{NoPower}; 
  valid     : out propagation{NoValue}; 
 flows 
     nopwr   : error path pwr{NoPower} -> valid(NoValue); 

 end propagations; 
**}; 

Listing 30: Definition of Error Path 
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Listing 31 shows an example of an error sink and corresponds to the component connected to the 
valid data port of the component bscu_subsystem.generic. In fact, this component handles the 
NoValue error type through its incoming data ports. 

system select_alternate 
features 
 input1 : in data port Base_Types::Boolean; 
 input2 : in data port Base_Types::Boolean; 
 result : out data port Base_Types::Boolean; 
annex EMV2{** 
 use types error_library; 
 use behavior error_library::simple; 
  
 error propagations 
  input1 : in propagation{NoValue}; 
  input2 : in propagation{NoValue}; 
  result : out propagation{NoValue}; 
 flows 
  f1 : error source result{NoValue}; 
  f2 : error sink input1{NoValue}; 
  f3 : error sink input2{NoValue}; 

 end propagations;   
**}; 

Listing 31: Definition of Error Sinks 

Figure 28 shows the error path across the components: from the battery (the error source) 
through the BSCU (the error path that transforms the NoPower error into a NoValue error) to 
Select_Alternate (error sink). 

 
Figure 28: Error Paths from the Battery to Select_Alternate 

4.2.2.4 Defining Error Events 

Error source and sinks are related to a component’s interfaces (incoming and outgoing ports). 
On the other hand, we can have error events that are internal to the component, which may affect 
the component’s behavior, such as by changing states and propagations. For example, two poten-
tial errors internal to the battery component include when the battery is depleted and when it ex-
plodes. Because these faults are related to the internal component’s behavior, we specify them as 
error events. The OSATE tool processes this information (the error event) when generating the 
FTA to show the error events that contribute to a top-level error in the FMEA and to list the er-
ror events that may be failure sources. 

We apply the modeling pattern described in Section 2.5 and add the error event in the component 
behavior, as shown in Listing 32. 

Battery 
(source) 

 

 
BSCU (path) 

 

Select Alternate 
(sink) 
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Listing 32: Battery Component Error Behavior with Events, Transitions, and Propagations 

4.2.2.5 Defining Component Error-Behavior Transitions 

A change in state within a component error behavior occurs through a transition. A transition, as 
discussed in Section 2.7, defines the originating error state, the transition condition, and the re-
sulting (target) error state. The condition references either an incoming error propagation or 
error event. 

For generating the FTA, the component behavior matters because the component may propagate 
errors when in a particular state. Therefore, users must specify the transition conditions that may 
trigger a component to switch to a state in which it propagates a particular error. For example, for 
the battery component, the error NoPower is propagated when the component is in the Failed 
state. Thus, adding the conditions that trigger the switch to the Failed state shows which error 
events or incoming propagations may contribute to the propagation of NoError. 

We apply the modeling pattern described in Section 2.7 and add transitions in the component be-
havior, as shown in Listing 32. These transitions switch the component state from Operational to 
Failed when an error event (Depleted or Explode) is triggered. 

4.2.2.6 Defining Component Error-Behavior Propagations 

Error propagations define the conditions for propagating an error when the component is in a 
specific state. In the battery example, the NoPower error type is propagated through the out 
propagations when in the Failed state. As the component switches to the Failed state when it 
receives the Depleted or Explode error event (see Listing 32), the NoPower error is propagated 
when the battery is either depleted or has exploded. 

device battery 
features 
 socket : provides bus access common::power.generic; 
annex EMV2{** 
 use types error_library; 
 use behavior error_library::simple; 
 
 error propagations 
  socket : out propagation{NoPower}; 
 flows 
  f1 : error source socket{NoPower}; 
 end propagations; 
 component error behavior 
 events 
  Depleted : error event; 
  Explode  : error event; 
 transitions 
  Operational -[Depleted]-> Failed; 
  Operational -[Explode]-> Failed; 
 propagations 
  p1: Failed -[]-> socket(NoPower); 
  normal : Operational -[]-> socket(NoError); 
**}; 
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We apply the modeling pattern described in Section 2.1 and add the error propagations in the 
component error behavior, as shown in Listing 32. Thus, the component propagates the NoPower 
error in the Failed state. 

4.2.2.7 Defining Composite Error Behavior 

The composite error behavior specifies the component state according to the state of its subcom-
ponent or its incoming error propagation, as described in Section 2.1. It is used to generate the 
FTA, which shows the top-level state with all contributors that may trigger the component to 
switch to this state. 

For the WBS, a composite error behavior is used to specify the condition related to a specific er-
ror state. For example, for the root system, being in the state UnannunciatedBrakingLoss means 
that the annunciation subsystem Failed but also that either all pumps failed or the BSCU failed. 
The following code example shows how to specify these Composite Error states through to the 
root component. 

system implementation wbs.generic 
subcomponents 
   pedals   : system pedals::pedals.generic; 
   power        : system power::power.generic; 
   blue_pump    : system pump::pump.i; 
   green_pump   : system pump::pump.i; 
   accumulator  : system pump::pump.i; 
   selector     : system valves::selector; 
   bscu         : system bscu::bscu.generic; 
   wheel        : system wheel::wheel; 
   annunciation           : device communication::annunciation.i; 
connections 
annex EMV2{** 
   use types error_library; 
   use behavior error_library::wbs; 
 
   composite error behavior 
   states 
      [bscu.Failed and accumulator.Failed  
                   and annunciation.Failed]-> UnannunciatedBrakingLoss; 
      [blue_pump.Failed and green_pump.Failed  
                        and accumulator.Failed 
                        and annunciation.Failed]-> UnannunciatedBrak-
ingLoss; 
 end composite;  
**}; 

end wbs.generic; 

Listing 33: Definition of the Composite Error Behavior for the Top-Level System 

4.2.3 Functional Hazard Assessment 

The initial FHA shows the high-level failures. It includes all error sources and error events as-
sociated with the properties EMV2::Hazards, ARP4761::Severity, and ARP4761::Likelihood. Be-
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cause the model specifies these properties only for the WBS states (see Section 4.2.2.1), the FHA 
includes only the WBS states. The produced FHA translates the AADL model information into a 
spreadsheet that contains the state names and the information from its associated properties, as 
shown in Figure 29. The report is similar to the one produced in the original document [SAE 
2011, p. 35, Fig. 17]. 

 

Figure 29: Extract of the Functional Hazard Assessment 

4.2.4 Fault Tree Analysis 

The FTA represents the decomposition of a top-level failure into its contributors. As a result, for 
each fault, it shows the conditions that may trigger its occurrence. This enables engineers to see 
the dependencies between the components and their incoming and outgoing error propagations 
or error events. 

To generate the FTA, the OSATE tool set analyzes all conditions that contribute to a particular 
state. It processes the composite error behavior model and walks through the referenced error 
states, incoming error propagations, or error events that may trigger a switch to this error 
state. 

Figure 30 shows the FTA for the state UnannunciatedBrakingLoss in the root system (represented 
with the yellow box at the top of the figure). It then shows an FTA similar to the one included in 
the original standard [SAE 2011, p. 49, Fig. 25]. 
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Figure 30: Extract of the Fault Tree Analysis 

4.2.5 Failure Modes and Effects Analysis 

The FMEA shows the impact of a component error or failure on the overall architecture. This is a 
bottom-up approach that lists for each potential error the impact on all the architecture. For each 
error source or error event, the tool analyzes the error path and lists all components affected 
by the fault originator. 

An FMEA can be represented in different ways, either with a graphical or textual approach. Fig-
ure 31 shows a textual version of a portion of the FMEA in a spreadsheet. It lists each error 
source or event and its impact on the overall architecture. Because the model includes many er-
ror sources, events, and paths, the complete document generated from the model is large and 
includes more than 250 error paths. 

 

Figure 31: Extract of the FMEA 
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4.3 Advanced Model 

4.3.1 Overview 

The advanced model is a revision of the original WBS AADL architecture that separates func-
tional and implementation aspects. Two models are then developed: 
1. A functional model represents system functions with their faults and associated dependen-

cies. It uses generic AADL components, such as system or abstract, and specifies connec-
tions using abstract features without a type. Note that this functional model is similar to a 
conceptual architecture view [Hofmeister 2000]. 

2. A realization model specifies the realization of the system using specialized AADL compo-
nents (device, processor, etc.). It explicitly represents a component’s interaction with the un-
derlying runtime environment (bus, processors, process, device, etc.). 

These two models are then integrated, and the components of the realization model are mapped to 
system functions. Several realization components can be mapped to the same functional compo-
nent (for example, all battery components are associated with the power function). 

4.3.1.1 Mapping with PSSA and SSA Phases 

These two models, and their association through a mapping using AADL, support the PSSA and 
SSA processes. Also, by mapping the realization model to the functional model, users can see 
how failures from the concrete system propagate to system functions and their associated compo-
nents. As a consequence, the complete model that combines the functional and realization models 
can show the complete fault tree of the actual system that is deployed. 

As the functional model represents system functions with their interactions and their associated 
faults and errors, it supports the PSSA phase. In addition, with all details of the system realization 
and its association to the functional model, the realization model supports the SSA phase. 

CMU/SEI-2014-TR-020 | 59  



 

 

Figure 32: Functional Model 

4.3.2 Functional Model 

The functional model represents system functions with their dependencies. Because this is a high-
level model, it uses generic components that do not provide any insight about system implementa-
tion. The model uses only the AADL system component to represent system functions and cap-
tures their dependencies using abstract features. No specific type of specialized implementation is 
associated with this model, leaving the implementation choice to the suppliers. 

However, an error model is associated with the function related to the WBS function. A dedicated 
Error Model Annex library, WBSFunctionalErrorLib, is specified to list all function-level errors 
and describe functional error state machines. 

The model contains the following top-level functions: 
• status: provides current system status (autopilot providing status of internal devices) 

• steering: provides directional control for the aircraft 

• electrical: provides power to aircraft components 

• alert: provides alert signals to the crew 

• decelerate: decelerates the aircraft 

• hydraulic: controls hydraulic components  

Then, for example, the decelerate function is decomposed into the following components (see 
Figure 33), showing that this function is provided by several subfunctions: 
1. deceleratewheels: Stop the aircraft by braking the wheels. 

This subfunction is in turn decomposed into subfunctions, including decelerateonground, 
preventmotion, directionalcontrol, and stopmainlanding. 

2. deceleratethrottle: Stop the aircraft with the aircraft engines. 
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Figure 33: Decomposition of the Decelerate Function 

4.3.3 Realization Model 

The realization model mimics the simple model defined in Section 4.2. It is composed of special-
ized components that realize the system. It also defines its own error library, WBSImplementa-
tionErrorLib, that lists and describes implementation-specific error and error state machines. 
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Figure 34: Realization Model 

This realization model defines the same architecture as the one presented in Section 4.2 with the 
IMA variance. The main change consists of using another error-model library, one dedicated to 
implementation-related faults (WBSImplementationLib). 

4.3.4 Binding Realization and Functional Models 

4.3.4.1 Procedure for Binding AADL Implementation and AADL Functional Components 

Once users have defined the functional and realization models, they may associate them, to define 
which component or components implement which functions. Then, by using the Error Model 
Annex, users can analyze how the realization model impacts the functional model. By associating 
these two models, one can see the propagation of an error originating from the realization into the 
functional model, propagating potentially to other realization-level components. 
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Figure 35 shows an example that represents a heating-control system: 
• At a functional level (orange boxes), two functional components interact: one acquires the 

temperature while the other adjusts the temperature. These two functions are connected in 
that the sensor sends the temperature value to the control function. 

• At a realization level (green boxes), one component takes the current temperature (sensor) 
and activates the heater, thereby changing the temperature value. 

Users will then define the binding between these models: the sensor from the realization model is 
bound to the functional component that acquires the temperature, and the heater is bound to the 
functional component that controls the temperature. This binding definition provides the explicit 
system realization. Then, once users have specified the binding, analysis tools can analyze the 
system and show that a fault occurring within the sensor may impact the heater through the func-
tional connection (between the acquire and control heat functions) and the binding associations. 

 

Figure 35: Example of Binding a Functional and a Realization Model 

In AADL, we bind function and realization components using processor bindings. So, to associate 
the sensor component with the functional acquire component, the model should contain the fol-
lowing property in the enclosing component: 

 Actual_Processor_Binding => (reference (sensor)) applies to acquire; 

Although this defines the binding association, it is still necessary to define the error propagation 
through the bindings. For the component that propagates an error through its bindings (for exam-
ple, the sensor), we define error propagations through those bindings. For example, the defini-
tion of the sensor device would be similar to the model shown in Listing 34.  

Sensor 

Acquire 
temperature 

Control heat 
temperature 

Heater 

Implementation 

Functional Propagation of sensor value 

Bindings 
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device sensor 
annex EMV2{** 
   use types WBSImplementationErrorLib; 
   use behavior WBSImplementationErrorLib::Twostate; 
   error propagations 
      bindings : out propagation{ImplementationBadValue}; 
   flows 
      f0 : error source bindings{AnyImplementationError}; 
   end propagations 
**}; 
end sensor; 
 

Listing 34: Definition of Outgoing Error Propagation Through Bindings 

On the other hand, the acquire function must declare that it may receive errors through its bind-
ings and potentially handle them. To do so, it is necessary to define the error propagations of the 
component through the processor binding. In the example shown in Listing 35, we explicitly de-
fine which errors are received by the acquire function through its bindings. 

system acquire  
annex EMV2{** 
 use types WBSFunctionalErrorLib; 
 error propagations 
  processor : in propagation{FunctionalBadValue}; 
 flows 
  f1 : error sink processor{FunctionalBadValue }; 
 end propagations; 
**}; 
end acquire; 

Listing 35: Definition of Incoming Error Propagation Through Bindings 

4.3.4.2 Mapping Error-Model Libraries 

Once components are associated and bound, it is necessary to check that error models are con-
sistent, especially if the functional and realization models do not use the same error libraries. We 
need to make sure that an error from one error model is correctly converted into an error from 
another. In our example, functional and realization components do not use the same error type. To 
address this issue, we define the mapping between the different error libraries. The mapping de-
fines how a type from one error library is translated into a type from another error library. This is 
done using the type mappings declaration. In the example below, the ImplementationBadValue is 
converted into a FunctionalBadValue. 

type mappings FunctionToImplementation 
  {ImplementationBadValue} -> (FunctionalBadValue); 
end mappings; 

Users must use this mapping definition in the top-level component that integrates the functional 
and realization components. In so doing, users employ the type equivalence keyword. In the fol-
lowing example, the main component uses the mappings defined previously. By defining this 
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equivalence, the incoming error propagation ImplementationBadValue will be interpreted as a 
FunctionalBadValue in the sensor component. 

system main 
end main; 
 
system implementation main.impl 
subcomponents 
 f0 : system acquire; 
 s0  : device sensor; 
properties 
 Actual_Processor_Binding => (reference (s0)) applies to f0;  
 
annex EMV2{** 
 use type equivalence WBSMappingErrorLib::FunctionToImplementation;
  
 **}; 

end main.impl; 

Listing 36: Definition of the Type Equivalence 

Architecture Fault Modeling also describes the mapping mechanism between different error li-
braries (Delange, forthcoming). 

4.3.4.3 Binding Associations in the Wheel Brake System 

In the WBS model, we define several binding associations: 
• The root implementation of the realization model is bound to the DecelerateWheels compo-

nent of the functional model (as a subcomponent of the main decelerate function). 

• The blue_pump, green_pump, and accumulator components from the realization model are 
bound to the hydraulic functional component. 

• The power, battery1, and battery2 components from the realization model are bound to the 
electrical functional component. 

These bindings are not complete, but they demonstrate how to bind a functional architecture with 
its realization. Also, the main intent is to show how the binding can refine the existing model and 
extend the analysis capabilities by enabling users to process the realization and the functional 
models together. 

4.3.4.4 Impact of Binding on Analysis Tools 

Associating functional and realization components enhances system analysis and provides the 
ability to see both the impact of system realization on the high-level functions and the impact of 
the functions on system realization. 

By binding the WBS functional and realization models together, users can see the additional in-
formation from the bindings association. This is shown in Figure 36 and Figure 37. The Fault Im-
pact Analysis of the functional model (Figure 36) reports only functional errors. The excerpt from 
the analysis result shows that the electrical function can fail and impact the subfunctions of De-
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celerateWheel (decelerateonground, directionalcontrol, stopmainlanding, and preventmotion). 
Also, after associating the battery1, battery2, and power components to the electrical system, we 
can see the propagation of these faults into the functional model, as shown in Figure 37. Thus, the 
errors listed in the functional model (Figure 36) can originate from a failure triggered in the reali-
zation components. In the excerpt in Figure 37, the Fault Impact Analysis of the integrated model 
shows that these faults can be triggered by the error raised in the battery1 component. 

 

Figure 36: Fault Impact Analysis of the Functional Model 

 

Figure 37: Fault Impact Analysis for the Integrated Model (Implementation + Functional) 
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5 Summary 

The AADL Error Model Annex provides a foundation to support the safety assessment processes 
described in SAE ARP4761: Guidelines and Methods for Conducting the Safety Assessment Pro-
cess on Civil Airborne Systems and Equipment [SAE 1996]. With the AADL Error Model Annex, 
Open Source AADL Tool Environment (OSATE), and supporting analysis tools, system designers 
can complete a Functional Hazard Assessment (FHA), Preliminary System Safety Assessment 
(PSSA), and System Safety Assessment (SSA) as described in ARP4761. In so doing, AADL 
practitioners can employ analysis techniques including Fault Tree Analysis (FTA), Failure Modes 
and Effects Analysis (FMEA), Markov Analysis (MA), and Dependence Diagrams (DDs), also 
referred to as Reliability Block Diagrams (RBDs). Model designers do so by creating AADL 
models with Error Model Annex annotations. They can assess the system hazards and faults and 
create hazard and fault reports as required in an FHA and FMEA using OSATE. They can also 
conduct qualitative and quantitative reliability analyses as part of FTAs, DDs/RBDs, or MAs us-
ing internal OSATE capabilities, or they can export fault and failure models to other tools, such as 
the open-source model-checking tool PRISM. Together, AADL and OSATE help enable specifi-
cation of risk mitigation methods in an architecture and assessments of system properties such as 
safety and reliability for civil airborne systems and equipment. 
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Acronyms 

AADL  Architecture Analysis and Design Language 

ARP  Aerospace Recommended Practice 

BSCU  Brake System Control Unit 

CTMC  continuous-time Markov chain 

DD  Decision Diagram 

DTMC  discrete-time Markov chain 

FHA  Functional Hazard Assessment 

FMEA  Failure Modes and Effects Analysis 

FTA  Fault Tree Analysis 

IMA  integrated modular avionics 

MA  Markov Analysis 

MTTF  mean time to failure 

OSATE  Open Source AADL Tool Environment 

PSSA  Preliminary System Safety Assessment 

RBD  Reliability Block Diagrams 

SSA  System Safety Assessment 

WBS  wheel brake system 

XML  Extensible Markup Language 
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